Based on a suite of computational fluid dynamics code, the pulsation characteristics are studied for turbulent supercavitating flows over a 2D base-vented symmetric hydrofoil using a pressure-based Navier-Stokes solve...Based on a suite of computational fluid dynamics code, the pulsation characteristics are studied for turbulent supercavitating flows over a 2D base-vented symmetric hydrofoil using a pressure-based Navier-Stokes solver coupled with a phase mass fraction transport cavitation model and local linear low-Reynolds-number k-ε turbulence model. It is found that there exists a critical air supply flow under certain inflow condition. When the gas supply flow exceeds the critical value, the cavity begins to pulsate. Pulsating cavity has a visually wavy surface, and air leakage shows as a mass of air-water mixture detaching from the rear part of the cavity periodically.展开更多
基金the National Natural Science Foundation of China(No:10832007)the Shanghai Leading Academic Discipline Project(No.B206)
文摘Based on a suite of computational fluid dynamics code, the pulsation characteristics are studied for turbulent supercavitating flows over a 2D base-vented symmetric hydrofoil using a pressure-based Navier-Stokes solver coupled with a phase mass fraction transport cavitation model and local linear low-Reynolds-number k-ε turbulence model. It is found that there exists a critical air supply flow under certain inflow condition. When the gas supply flow exceeds the critical value, the cavity begins to pulsate. Pulsating cavity has a visually wavy surface, and air leakage shows as a mass of air-water mixture detaching from the rear part of the cavity periodically.