期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于卷积神经网络与CatBoost的轴承故障诊断算法
被引量:
2
1
作者
鲁夕瑶
张成彬
+2 位作者
皋军
徐燕萍
邵星
《机电工程》
CAS
北大核心
2023年第5期715-722,共8页
使用一般诊断算法对滚动轴承进行故障排查时,需要对数据进行特征提取,而在其特征提取过程中存在数据量庞大、手动提取和选择受限的问题,为此,提出了一种基于卷积神经网络(CNN)与CatBoost的混合分类模型(方法),以进行轴承的故障诊断。首...
使用一般诊断算法对滚动轴承进行故障排查时,需要对数据进行特征提取,而在其特征提取过程中存在数据量庞大、手动提取和选择受限的问题,为此,提出了一种基于卷积神经网络(CNN)与CatBoost的混合分类模型(方法),以进行轴承的故障诊断。首先,将预处理后的数据经过CNN提取的特征作为输入量,输入到该模型中,提取了训练后输出的模型参数;然后,使用CatBoost方法对滚动轴承数据集进行了分析,进一步研究了不同学习模型在同一数据集下对分类精度的影响;最后,通过降低过拟合的风险,运用4种相关系数指标进行了对比实验,研究了CNN-CatBoost混合分类模型对滚动轴承故障数据的分类效果。研究结果表明:基于CNN与CatBoost方法进行轴承故障诊断的平均准确率达到98%以上,该方法的有效性得到了验证;采用少量的数据训练样本即可达到较好的轴承故障数据分类效果,与单一深度学习模型和一些典型机器学习模型相比,该模型具有更好的性能。
展开更多
关键词
卷积神经网络
CatBoost算法
故障特征提取
故障分类精度
深度学习模型
训练时间
下载PDF
职称材料
题名
基于卷积神经网络与CatBoost的轴承故障诊断算法
被引量:
2
1
作者
鲁夕瑶
张成彬
皋军
徐燕萍
邵星
机构
盐城工学院信息工程学院
盐城工学院机械工程学院
出处
《机电工程》
CAS
北大核心
2023年第5期715-722,共8页
基金
国家自然科学基金资助项目(61375001,61502411)。
文摘
使用一般诊断算法对滚动轴承进行故障排查时,需要对数据进行特征提取,而在其特征提取过程中存在数据量庞大、手动提取和选择受限的问题,为此,提出了一种基于卷积神经网络(CNN)与CatBoost的混合分类模型(方法),以进行轴承的故障诊断。首先,将预处理后的数据经过CNN提取的特征作为输入量,输入到该模型中,提取了训练后输出的模型参数;然后,使用CatBoost方法对滚动轴承数据集进行了分析,进一步研究了不同学习模型在同一数据集下对分类精度的影响;最后,通过降低过拟合的风险,运用4种相关系数指标进行了对比实验,研究了CNN-CatBoost混合分类模型对滚动轴承故障数据的分类效果。研究结果表明:基于CNN与CatBoost方法进行轴承故障诊断的平均准确率达到98%以上,该方法的有效性得到了验证;采用少量的数据训练样本即可达到较好的轴承故障数据分类效果,与单一深度学习模型和一些典型机器学习模型相比,该模型具有更好的性能。
关键词
卷积神经网络
CatBoost算法
故障特征提取
故障分类精度
深度学习模型
训练时间
Keywords
convolutional neural network(CNN)
CatBoost algorithm
fault feature extraction
fault classification accuracy
deep learning model
training time
分类号
TH133.33 [机械工程—机械制造及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于卷积神经网络与CatBoost的轴承故障诊断算法
鲁夕瑶
张成彬
皋军
徐燕萍
邵星
《机电工程》
CAS
北大核心
2023
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部