电池健康状态(state of health,SOH)是影响锂离子电池大规模应用的关键因素,而基于数据驱动的锂离子健康状态估计方法已经成为当前相关研究的热点课题。为了系统地剖析数据驱动下电池SOH估计方法的关键技术和难点问题,从电池数据来源、...电池健康状态(state of health,SOH)是影响锂离子电池大规模应用的关键因素,而基于数据驱动的锂离子健康状态估计方法已经成为当前相关研究的热点课题。为了系统地剖析数据驱动下电池SOH估计方法的关键技术和难点问题,从电池数据来源、特征工程、估计模型以及验证途径4个核心环节出发,综述当前研究的进展。通过多种不同方法基本机理的分析和优缺点对比,凝炼出制约技术发展的瓶颈问题,展望未来研究的重点方向,推动基于数据驱动的锂离子电池SOH估计技术的进一步发展与应用。展开更多
锂电池荷电状态(state of charge,SOC)估计技术是保证电力储能和电动汽车合理应用的核心技术,也是锂电池系统控制运营、监测维护的基础。在锂电池实际应用中,其表现出非线性、时变性、影响因素复杂性和不确定性的问题,造成了荷电状态估...锂电池荷电状态(state of charge,SOC)估计技术是保证电力储能和电动汽车合理应用的核心技术,也是锂电池系统控制运营、监测维护的基础。在锂电池实际应用中,其表现出非线性、时变性、影响因素复杂性和不确定性的问题,造成了荷电状态估计难度大、精度不高和适应能力不足。为此,众多锂电池荷电状态估计算法及改进策略应运而生。与此同时,部分研究人员针对不同估计方法和改进策略的实现方式和优缺点开展了分析与对比,但相关综述对估计方法的技术特点和适用性方面的论述不足且缺乏系统性总结。本文首先分析了锂电池荷电状态估计的影响因素和测试标准;然后从基于实验计算的传统方法、基于电池模型的滤波类算法、基于数据驱动的机器学习技术以及数模混合估计方法四个方面开展对比分析,归纳总结各类方法的技术特点、实现过程、适用条件、难题痛点以及应用优势,系统全面地论述了现有锂电池荷电状态估计技术的研究重点和应用现状;最后,展望了锂电池荷电状态估计算法的未来研究方向。展开更多
文摘电池健康状态(state of health,SOH)是影响锂离子电池大规模应用的关键因素,而基于数据驱动的锂离子健康状态估计方法已经成为当前相关研究的热点课题。为了系统地剖析数据驱动下电池SOH估计方法的关键技术和难点问题,从电池数据来源、特征工程、估计模型以及验证途径4个核心环节出发,综述当前研究的进展。通过多种不同方法基本机理的分析和优缺点对比,凝炼出制约技术发展的瓶颈问题,展望未来研究的重点方向,推动基于数据驱动的锂离子电池SOH估计技术的进一步发展与应用。
文摘锂电池荷电状态(state of charge,SOC)估计技术是保证电力储能和电动汽车合理应用的核心技术,也是锂电池系统控制运营、监测维护的基础。在锂电池实际应用中,其表现出非线性、时变性、影响因素复杂性和不确定性的问题,造成了荷电状态估计难度大、精度不高和适应能力不足。为此,众多锂电池荷电状态估计算法及改进策略应运而生。与此同时,部分研究人员针对不同估计方法和改进策略的实现方式和优缺点开展了分析与对比,但相关综述对估计方法的技术特点和适用性方面的论述不足且缺乏系统性总结。本文首先分析了锂电池荷电状态估计的影响因素和测试标准;然后从基于实验计算的传统方法、基于电池模型的滤波类算法、基于数据驱动的机器学习技术以及数模混合估计方法四个方面开展对比分析,归纳总结各类方法的技术特点、实现过程、适用条件、难题痛点以及应用优势,系统全面地论述了现有锂电池荷电状态估计技术的研究重点和应用现状;最后,展望了锂电池荷电状态估计算法的未来研究方向。