The surface oxidation behavior of pressureless sintered Al2O3/SiC nanocomposite was studied from 1000 to 1400 ℃ for more than 10 h in air. Weight gain during the process of heat treatment was measured by TG analysis....The surface oxidation behavior of pressureless sintered Al2O3/SiC nanocomposite was studied from 1000 to 1400 ℃ for more than 10 h in air. Weight gain during the process of heat treatment was measured by TG analysis. Phase transformation and microstructure changes of these specimens due to oxidation were investigated with X-ray diffraction (XRD), SEM and EDX technology. Thermogravimetric analysis show that the weight gain as a result of oxidation of SiC become significant above 1200 ℃. In the range of 1000 - 1300 ℃, the SiC grits are usually coated with a layer of amorphous silica after oxidation. Above 1300 ℃, the amorphous silica reacted with alumina matrix and formed mullite or crystallized into cristobalite. The rate of oxidation depends on the formation of dense cristobalite film. Large amount of needle-like mullite and alumina crystals are formed on the surface after oxidation at 1400℃.展开更多
基金The project supported by the National Natural Science Foundation of China (No.60376003,No.60576005)The Natural ScienceFoundation of Guangdong Province(No.04011297)
基金Project supported bythe Ministry of Science and Technology via‘863’High Technology Projects (2002AA332080)
文摘The surface oxidation behavior of pressureless sintered Al2O3/SiC nanocomposite was studied from 1000 to 1400 ℃ for more than 10 h in air. Weight gain during the process of heat treatment was measured by TG analysis. Phase transformation and microstructure changes of these specimens due to oxidation were investigated with X-ray diffraction (XRD), SEM and EDX technology. Thermogravimetric analysis show that the weight gain as a result of oxidation of SiC become significant above 1200 ℃. In the range of 1000 - 1300 ℃, the SiC grits are usually coated with a layer of amorphous silica after oxidation. Above 1300 ℃, the amorphous silica reacted with alumina matrix and formed mullite or crystallized into cristobalite. The rate of oxidation depends on the formation of dense cristobalite film. Large amount of needle-like mullite and alumina crystals are formed on the surface after oxidation at 1400℃.