【目的】研究融合无人机遥感影像多光谱信息和纹理特征估算马铃薯Solanum tuberosum叶面积指数(Leaf area index,LAI)方法,提高马铃薯LAI反演精度。【方法】利用大疆P4M无人机采集2021年2-4月南方冬种马铃薯幼苗期、现蕾期、块茎膨大期...【目的】研究融合无人机遥感影像多光谱信息和纹理特征估算马铃薯Solanum tuberosum叶面积指数(Leaf area index,LAI)方法,提高马铃薯LAI反演精度。【方法】利用大疆P4M无人机采集2021年2-4月南方冬种马铃薯幼苗期、现蕾期、块茎膨大期多光谱影像,用LAI-2000冠层分析仪实测LAI数据。提取影像光谱、纹理等信息,分析植被指数、纹理特征与LAI的相关性,基于R^(2)_(adj)的全子集分析优选特征变量。采用主成分分析,融合光谱和纹理特征,用PCA-MLR(Principal component analysis-multiple linear regression)模型估算马铃薯LAI。【结果】从幼苗期到块茎膨大期,PCA-MLR估算模型优于T-MLR(Texture multiple linear regression)和VIMLR(Vegetation index multiple linear regression)模型,R2分别为0.73、0.59和0.66。【结论】本研究提出一种估算马铃薯LAI的PCA-MLR方法,为马铃薯的长势监测和田间管理提供数据支持。展开更多
文摘【目的】研究融合无人机遥感影像多光谱信息和纹理特征估算马铃薯Solanum tuberosum叶面积指数(Leaf area index,LAI)方法,提高马铃薯LAI反演精度。【方法】利用大疆P4M无人机采集2021年2-4月南方冬种马铃薯幼苗期、现蕾期、块茎膨大期多光谱影像,用LAI-2000冠层分析仪实测LAI数据。提取影像光谱、纹理等信息,分析植被指数、纹理特征与LAI的相关性,基于R^(2)_(adj)的全子集分析优选特征变量。采用主成分分析,融合光谱和纹理特征,用PCA-MLR(Principal component analysis-multiple linear regression)模型估算马铃薯LAI。【结果】从幼苗期到块茎膨大期,PCA-MLR估算模型优于T-MLR(Texture multiple linear regression)和VIMLR(Vegetation index multiple linear regression)模型,R2分别为0.73、0.59和0.66。【结论】本研究提出一种估算马铃薯LAI的PCA-MLR方法,为马铃薯的长势监测和田间管理提供数据支持。