期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
多期相CT合成辅助的腹部多器官图像分割 被引量:1
1
作者 黄品瑜 钟丽明 +4 位作者 郑楷宜 陈泽立 肖若琳 全显跃 阳维 《南方医科大学学报》 CAS CSCD 北大核心 2024年第1期83-92,共10页
目的提出并探讨使用多期相CT合成辅助腹部多器官分割方法。方法提出多期相CT合成辅助腹部多器官分割,多期相CT能够充分提供同一器官不同的图像细节,从而为分割模型提供充分的全面的语义信息,提升腹部多个器官分割的性能。提出基于多头... 目的提出并探讨使用多期相CT合成辅助腹部多器官分割方法。方法提出多期相CT合成辅助腹部多器官分割,多期相CT能够充分提供同一器官不同的图像细节,从而为分割模型提供充分的全面的语义信息,提升腹部多个器官分割的性能。提出基于多头自注意力感知的多期相CT合成方法,引入基于多头自注意力机制的Transformer模块,提升合成网络捕捉长距离语义信息的能力,扩大网络的感受野,并且引入感知损失,在特征层面对合成图像与真实图像特征之间的差异最小化,与Transformer模块有协同作用,从而合成出更清晰、更高质量的多期相CT图像。结果使用南方医院的多期相CT数据集训练模型。其中用526例多期相CT训练合成模型,利用动脉期增强动脉CT(A.CECT)合成出平扫CT(NECT)、静脉期CECT(V.CECT)、延迟期CECT(D.CECT)的平均最大化绝对误差(MAE)分别为19.192±3.381、20.140±2.676、22.538±2.874,结合统计学对比,本文方法优于对比的其他图像合成方法(P<0.05)。多期相CT合成辅助的腹部多器官分割方法验证在内部验证集上进行验证平均Dice系数(DSC)为0.847,在外部验证集上进行验证平均DSC为0.823。结论本文方法能够合成出高质量的多期相CT图像以有效缓解不同期相CT之间存在的配准无法解决的误差问题,同时提高腹部13器官的分割性能,具有良好的泛化性能。 展开更多
关键词 腹部多器官分割 多期相CT合成 对抗生成网络 TRANSFORMER
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部