期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于解空间降维的大规模约束多目标进化算法 被引量:1
1
作者 王朝 黄慧涛 +1 位作者 张晶 邱剑锋 《电子学报》 EI CAS CSCD 北大核心 2023年第11期3120-3127,共8页
针对大规模约束多目标优化问题呈现的高维度和约束限制的解空间,提出一种基于自编码器的解空间降维方法,用以提升进化算法搜索效率.首先,设计一种可行性标签配对策略训练自编码器,通过同时利用解的可行与不可行两类标签信息,构建包含可... 针对大规模约束多目标优化问题呈现的高维度和约束限制的解空间,提出一种基于自编码器的解空间降维方法,用以提升进化算法搜索效率.首先,设计一种可行性标签配对策略训练自编码器,通过同时利用解的可行与不可行两类标签信息,构建包含可行域拓扑信息的降维子空间;其次,在降维后的子空间中进行遗传操作,通过解码器得到重构输出返回原始空间,快速定位潜在的可行区域;最后,设计一种子代自适应生成策略,通过结合在降维空间和原始空间生成的子代优势,防止模型坍塌同时提高搜索效率.在基准测试问题集上与五种先进算法进行对比,实验结果表明所提方法能获得更快的收敛速度和更好的解集质量. 展开更多
关键词 大规模约束多目标优化 进化算法 自编码器 空间降维 子代生成 可行性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部