麦穗数量检测对于作物表型参数计算、产量预测和大田管理都具有重要的意义。为了解决人工计数工作量大且容易出错的问题,提出了一种基于You Only Look Once (YOLO)的麦穗目标检测与计数方法。首先利用大量小麦图像对深度神经网络进行训...麦穗数量检测对于作物表型参数计算、产量预测和大田管理都具有重要的意义。为了解决人工计数工作量大且容易出错的问题,提出了一种基于You Only Look Once (YOLO)的麦穗目标检测与计数方法。首先利用大量小麦图像对深度神经网络进行训练,然后利用神经网络对小麦图像进行麦穗目标检测与计数,最后对神经网络目标检测的准确率和召回率进行计算评估,并通过分析检测结果验证其鲁棒性。分析结果显示,所训练网络对麦穗检测的精确率为76.96%,召回率为93.16%,均值平均精度mean Average Precision (mAP)为89.52%。此外,该模型可以检测不同生长时期的麦穗,具有较高的鲁棒性。研究表明,该方法对比其他麦穗计数方法准确高效,可以实际应用到小麦的产量估算上。展开更多
文摘麦穗数量检测对于作物表型参数计算、产量预测和大田管理都具有重要的意义。为了解决人工计数工作量大且容易出错的问题,提出了一种基于You Only Look Once (YOLO)的麦穗目标检测与计数方法。首先利用大量小麦图像对深度神经网络进行训练,然后利用神经网络对小麦图像进行麦穗目标检测与计数,最后对神经网络目标检测的准确率和召回率进行计算评估,并通过分析检测结果验证其鲁棒性。分析结果显示,所训练网络对麦穗检测的精确率为76.96%,召回率为93.16%,均值平均精度mean Average Precision (mAP)为89.52%。此外,该模型可以检测不同生长时期的麦穗,具有较高的鲁棒性。研究表明,该方法对比其他麦穗计数方法准确高效,可以实际应用到小麦的产量估算上。