通过传统固相法合成了具有超晶格结构的Ba Bi_(8)Ti_(7-x)(Cu_(1/3)Nb_(2/3))_(x)O_(27)(简称:BBT-BIT-x(Cu_(1/3)Nb_(2/3))共生陶瓷。结果表明,BBT-BIT-x(Cu_(1/3)Nb_(2/3))陶瓷的电学性能得到了有效地改善:随着x的增加,介电损耗呈现...通过传统固相法合成了具有超晶格结构的Ba Bi_(8)Ti_(7-x)(Cu_(1/3)Nb_(2/3))_(x)O_(27)(简称:BBT-BIT-x(Cu_(1/3)Nb_(2/3))共生陶瓷。结果表明,BBT-BIT-x(Cu_(1/3)Nb_(2/3))陶瓷的电学性能得到了有效地改善:随着x的增加,介电损耗呈现先减小后增大的趋势,居里温度逐渐增加(Tc:483~494℃);压电常数和剩余极化强度都呈现出先增大后减小的趋势,其中x=0.035时压电常数和剩余极化强度同时达到最高值分别为d_(33)=18 p C/N,2P_(r)=16.5μC/cm^(2)。此外,BBT-BIT-0.035(Cu_(1/3)Nb_(2/3))陶瓷具有良好的热稳定性,在400℃/0.5 h下压电常数仍有14 p C/N,是起始值的82.4%,这有利于在较高温度的环境下工作。展开更多
采用传统固相法制备了(Na0.5Bi0.5)1-xLaxBi2Nb2O9(NBN-x La^3+,x=0.00,0.04,0.08,0.16,0.24,0.32,0.40)陶瓷,分析了稀土离子La^3+掺杂对Na0.5Bi2.5Nb2O9陶瓷的相结构、微观结构和电学性能的影响。XRD和拉曼结果表明La^3+成功进入NBN晶...采用传统固相法制备了(Na0.5Bi0.5)1-xLaxBi2Nb2O9(NBN-x La^3+,x=0.00,0.04,0.08,0.16,0.24,0.32,0.40)陶瓷,分析了稀土离子La^3+掺杂对Na0.5Bi2.5Nb2O9陶瓷的相结构、微观结构和电学性能的影响。XRD和拉曼结果表明La^3+成功进入NBN晶格内部并减弱了结构的正交畸变。La^3+掺杂引起的结构变化和氧空位浓度的降低使得陶瓷样品更易于被极化,压电活性提升。当x=0.24时,陶瓷的电学性能达到最佳:Tc=647℃,εr=328,tanδ=1.09%,d33=22.8 p C/N,Qm=3259。NBN-0.24La^3+陶瓷压电常数d33在高温下表现出良好的温度稳定性,样品在500℃下退火2 h,压电常数d33仍能保持在20.3 p C/N,为初始值的89%。展开更多
采用固相法制备BaBi_(8)Ti_(7-x)Mg_(x)O_(27-δ)(x=0,0.2,0.4,0.6,0.8)共生铋层状无铅压电陶瓷样品,研究Mg^(2+)含量对陶瓷样品的结构、电学性能及其温度稳定性的影响。结果表明:所有陶瓷样品均呈单一的相结构;随着Mg^(2+)含量的增加,...采用固相法制备BaBi_(8)Ti_(7-x)Mg_(x)O_(27-δ)(x=0,0.2,0.4,0.6,0.8)共生铋层状无铅压电陶瓷样品,研究Mg^(2+)含量对陶瓷样品的结构、电学性能及其温度稳定性的影响。结果表明:所有陶瓷样品均呈单一的相结构;随着Mg^(2+)含量的增加,介电常数与介电损耗均呈现减小的趋势,样品在高温下阻抗和激活能均增大。此外,一定含量的Mg^(2+)会使晶粒由片状转为颗粒状等轴晶粒,这有利于陶瓷样品压电性能的提升。当x=0.6时,综合电性能达到最佳,居里温度约为480℃;压电常数为18.8 p C·N^(-1),约为未掺杂样品的250%。展开更多
基金National Natural Science Foundation of China(52062018,51762024)Natural Science Foundation of Jiangxi Province(2019BAB206008,20192BAB212002)Foundation of Jiangxi Provincial Education Department(GJJ190699)。
文摘通过传统固相法合成了具有超晶格结构的Ba Bi_(8)Ti_(7-x)(Cu_(1/3)Nb_(2/3))_(x)O_(27)(简称:BBT-BIT-x(Cu_(1/3)Nb_(2/3))共生陶瓷。结果表明,BBT-BIT-x(Cu_(1/3)Nb_(2/3))陶瓷的电学性能得到了有效地改善:随着x的增加,介电损耗呈现先减小后增大的趋势,居里温度逐渐增加(Tc:483~494℃);压电常数和剩余极化强度都呈现出先增大后减小的趋势,其中x=0.035时压电常数和剩余极化强度同时达到最高值分别为d_(33)=18 p C/N,2P_(r)=16.5μC/cm^(2)。此外,BBT-BIT-0.035(Cu_(1/3)Nb_(2/3))陶瓷具有良好的热稳定性,在400℃/0.5 h下压电常数仍有14 p C/N,是起始值的82.4%,这有利于在较高温度的环境下工作。
基金National Natural Science Foundation of China(51762024,51562014,51862016 and 51602135)Natural Science Foundation of Jiangxi Province(20171BAB216012,20192BAB206008 and 20192BAB212002)Science Foundation of Jiangxi Provincial Education Department of China(GJJ180718 and GJJ180739)。
文摘采用传统固相法制备了(Na0.5Bi0.5)1-xLaxBi2Nb2O9(NBN-x La^3+,x=0.00,0.04,0.08,0.16,0.24,0.32,0.40)陶瓷,分析了稀土离子La^3+掺杂对Na0.5Bi2.5Nb2O9陶瓷的相结构、微观结构和电学性能的影响。XRD和拉曼结果表明La^3+成功进入NBN晶格内部并减弱了结构的正交畸变。La^3+掺杂引起的结构变化和氧空位浓度的降低使得陶瓷样品更易于被极化,压电活性提升。当x=0.24时,陶瓷的电学性能达到最佳:Tc=647℃,εr=328,tanδ=1.09%,d33=22.8 p C/N,Qm=3259。NBN-0.24La^3+陶瓷压电常数d33在高温下表现出良好的温度稳定性,样品在500℃下退火2 h,压电常数d33仍能保持在20.3 p C/N,为初始值的89%。
基金National Natural Science Foundation of China(51762024,51562014,51862016 and 51602135)Natural Science Foundation of Jiangxi province(20171BAB216012)Science Foundation of Jiangxi Provincial Education Department of China(GJJ170789,GJJ170804,GJJ180718 and GJJ170794).
文摘采用固相法制备BaBi_(8)Ti_(7-x)Mg_(x)O_(27-δ)(x=0,0.2,0.4,0.6,0.8)共生铋层状无铅压电陶瓷样品,研究Mg^(2+)含量对陶瓷样品的结构、电学性能及其温度稳定性的影响。结果表明:所有陶瓷样品均呈单一的相结构;随着Mg^(2+)含量的增加,介电常数与介电损耗均呈现减小的趋势,样品在高温下阻抗和激活能均增大。此外,一定含量的Mg^(2+)会使晶粒由片状转为颗粒状等轴晶粒,这有利于陶瓷样品压电性能的提升。当x=0.6时,综合电性能达到最佳,居里温度约为480℃;压电常数为18.8 p C·N^(-1),约为未掺杂样品的250%。
基金National Natural Science Foundation of China (52062018, 52162003)the Excellent Youth Foundation of Jiangxi Province of China (20212ACB214007)+2 种基金Key R&D Plan Projects of Jiangxi Province (20223BBE51018)Natural Science Foundation of Jiangxi Province (20212BAB201019)Key Projects of Jingdezhen (2021ZDGG002)。
基金National Natural Science Foundation of China(52062018,51762024,51862016)Natural Science Foundation of Jiangxi Province(20192BAB20600,20192BAB212002)Foundation of Jiangxi Provincial Education Department(GJJ190712,GJJ201331,GJJ190699)。
基金National Natural Science Foundation of China(51762024,51862016)Natural Science Foundation of Jiangxi Province(20192BAB206008,20192BAB212002)Science and Technology Research Project of Jiangxi Provincial Education(GJJ190712,GJJ180718,GJJ180739)。