期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进的i-vector 的方言语种识别
1
作者 黄洪设 刘本永 《通信技术》 2023年第2期156-160,共5页
经典的i-vector的提取方法利用方言特征在通用背景模型(Universal Background Model,UBM)的统计差异来构建全局差异空间,对方言语种的区分能力较弱。为此,提出了一种基于改进的i-vector的提取算法,利用方言特征在方言相关的高斯混合模型... 经典的i-vector的提取方法利用方言特征在通用背景模型(Universal Background Model,UBM)的统计差异来构建全局差异空间,对方言语种的区分能力较弱。为此,提出了一种基于改进的i-vector的提取算法,利用方言特征在方言相关的高斯混合模型(Gaussian Mixture Model,GMM)上的统计差异来构建全局差异空间,提升i-vector对方言语种的区分能力。首先基于方言相关GMM分别构建全局差异空间;其次拼接各空间中提取到的i-vector并进行主成分分析(Principal Component Analysis,PCA)降维,得到改进的i-vector;最后采用高斯概率线性判别分析(Gaussian Probabilistic Linear Discriminant Analysis,GPLDA)模型进行建模和打分。实验表明,所提算法较经典i-vector算法能更有效地提升对方言语种的识别性能。 展开更多
关键词 方言语种识别 方言相关GMM 全局差异空间 i-vector
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部