期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于SVM-MLP的乳腺癌预测
被引量:
3
1
作者
王德广
黄盈朵
《微型电脑应用》
2022年第1期130-133,138,共5页
乳腺癌一直是影响女性健康最重要的问题之一,已经成为全球女性发病率最高的恶性肿瘤。近年来,利用机器学习和深度学习方法来诊断癌症已经成为发展较快的一个分支。通过使用逻辑回归模型(LR)、高斯核函数支持向量机(SVM)、前馈神经网络(M...
乳腺癌一直是影响女性健康最重要的问题之一,已经成为全球女性发病率最高的恶性肿瘤。近年来,利用机器学习和深度学习方法来诊断癌症已经成为发展较快的一个分支。通过使用逻辑回归模型(LR)、高斯核函数支持向量机(SVM)、前馈神经网络(MLP)对同一数据集进行预测,得出其中SVM迭代时间最短,前馈神经网络预测准确率最高。为了减少前馈神经网络的迭代时间,提出了基于SVM优化的前馈神经网络分类乳腺癌模型,实验结果表明:基于SVM优化后的前馈神经网络模型与Logistic模型、传统SVM模型相比具有更高的分类准确率,且迭代时间相对减少。
展开更多
关键词
支持向量机
逻辑回归
深度学习
前馈神经网络
乳腺癌预测
下载PDF
职称材料
题名
基于SVM-MLP的乳腺癌预测
被引量:
3
1
作者
王德广
黄盈朵
机构
大连交通大学软件学院
出处
《微型电脑应用》
2022年第1期130-133,138,共5页
文摘
乳腺癌一直是影响女性健康最重要的问题之一,已经成为全球女性发病率最高的恶性肿瘤。近年来,利用机器学习和深度学习方法来诊断癌症已经成为发展较快的一个分支。通过使用逻辑回归模型(LR)、高斯核函数支持向量机(SVM)、前馈神经网络(MLP)对同一数据集进行预测,得出其中SVM迭代时间最短,前馈神经网络预测准确率最高。为了减少前馈神经网络的迭代时间,提出了基于SVM优化的前馈神经网络分类乳腺癌模型,实验结果表明:基于SVM优化后的前馈神经网络模型与Logistic模型、传统SVM模型相比具有更高的分类准确率,且迭代时间相对减少。
关键词
支持向量机
逻辑回归
深度学习
前馈神经网络
乳腺癌预测
Keywords
SVM
logistic regression
deep-learning
feedforward neural network
breast cancer prediction
分类号
R737.9 [医药卫生—肿瘤]
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于SVM-MLP的乳腺癌预测
王德广
黄盈朵
《微型电脑应用》
2022
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部