期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于CUDA的多信道锋电位实时分类方法
1
作者 蔡瑞初 赵坤垚 +2 位作者 黄礼泊 何炯 陈瑶 《计算机工程与设计》 北大核心 2020年第2期391-396,共6页
为提高多信道神经元锋电位分类任务的计算效率,满足其在实时场景下的应用需求,提出基于统一计算设备架构(compute unified device architecture,CUDA)的掩蔽高斯混合模型的并行化实现和优化方案。利用高维锋电位数据的稀疏特性和高斯混... 为提高多信道神经元锋电位分类任务的计算效率,满足其在实时场景下的应用需求,提出基于统一计算设备架构(compute unified device architecture,CUDA)的掩蔽高斯混合模型的并行化实现和优化方案。利用高维锋电位数据的稀疏特性和高斯混合模型的强抗干扰性以及良好并行性,借助GPU图形处理器,对特征掩蔽高斯混合模型(Masked Gaussian mixture model,Masked GMM)进行并行实现,进行针对性优化。实验结果表明,在32信道的锋电位数据集上,与原有的CPU串行实现相比,该方案分类速度提高了170倍左右,达到了实时计算,为高维信道锋电位实时分类提供了可行的解决方案。 展开更多
关键词 锋电位分类 特征掩蔽高斯混合模型 图形处理单元 统一计算设备架构 实时
下载PDF
一种无参数的局部线性判别分析方法 被引量:1
2
作者 黄礼泊 凌永权 《计算机科学与应用》 2021年第4期1042-1052,共9页
为了解决因引入局部化思想的线性判别分析(Linear Discriminant Analysis, LDA)方法需要人工设置邻居个数而无法以自适应的方式挖掘数据的局部结构问题,提出了一种无参数的局部线性判别分析(Parameter-free Local Linear Discriminant A... 为了解决因引入局部化思想的线性判别分析(Linear Discriminant Analysis, LDA)方法需要人工设置邻居个数而无法以自适应的方式挖掘数据的局部结构问题,提出了一种无参数的局部线性判别分析(Parameter-free Local Linear Discriminant Analysis, Pf-LLDA)方法。该方法首先建立了一个关于权重矩阵和变换矩阵的统一优化模型。然后,通过使用交替方向的方法迭代求解出了与数据局部结构相关的权重矩阵和与判别分析相关的变换矩阵。从而使得Pf-LLDA在无需人为设定邻居个数的情况下,自适应地挖掘出了数据的局部结构并最终实现了局部线性判别分析的能力。在仿真数据集和手写体真实数据集上的实验结果表明,Pf-LLDA挖掘出数据局部结构的同时实现了更优的判别分析结果。 展开更多
关键词 无参 近邻 线性判别分析 局部结构 降维
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部