Long(15-40 μm), thin(diameter of 20 ± 5 nm), and well-dispersed CuNWs Cu nanowires were prepared. The high-resolution TEM and selected area electron diffraction showed that the CuNWs were single-crystalline. To ...Long(15-40 μm), thin(diameter of 20 ± 5 nm), and well-dispersed CuNWs Cu nanowires were prepared. The high-resolution TEM and selected area electron diffraction showed that the CuNWs were single-crystalline. To investigate the growth mechanism, we examined the microstructure of these CuNWs at different reaction time. It was found that the CuNWs were actually formed through the self-assembling of Cu nanoparticles along the [110] direction. The transparent electrodes fabricated using the CuNWs achieved a high transparency of 76 % at 31±5 Ω/□.展开更多
As a wide band gap semiconductor material,tin oxide(SnO_(2))has been widely used in gas sensing,optoelectronics and catalysis.The complex micro and nanoscale threedimensional(3D)geometric structures endow the conventi...As a wide band gap semiconductor material,tin oxide(SnO_(2))has been widely used in gas sensing,optoelectronics and catalysis.The complex micro and nanoscale threedimensional(3D)geometric structures endow the conventional SnO_(2)ceramics with novel properties and functionalities.Nevertheless,ceramics cannot be cast or machined easily due to their high mechanical toughness and resistance.The additive manufacturing opens a great opportunity for flexibly geometrical shaping,while the arbitrary shaping of SnO_(2)ceramics at micro and nanoscale is always a challenge.Herein,preceramic monomers which can be polymerized under ultrafast laser irradiation,were utilized to form complex and arbitrary 3D preceramic polymer structures.After calcination treatment,these green-body structures could be converted into pure high-dense SnO_(2)ceramics with uniform shrinkage,and the feature size was down to submicron.Transmission electron microscopy(TEM)analysis displays that the printed SnO_(2)ceramic nanostructures can be nanocrystallized with grain sizes of 2.5±0.4 nm.This work provides the possibility of manufacturing 3D SnO_(2)ceramic nanostructures arbitrarily with sub-100 nm resolution,thus making it promising for the applications of SnO_(2)in different fields.展开更多
Organic-inorganic hybrid perovskite materials have recently attracted extensive attentions because of their intriguing optoelectronic properties for photovoltaics[1],[2],[3].The power conversion efficiency(PCE)of pero...Organic-inorganic hybrid perovskite materials have recently attracted extensive attentions because of their intriguing optoelectronic properties for photovoltaics[1],[2],[3].The power conversion efficiency(PCE)of perovskite solar cells(PSCs)experienced an incredible rise from 3.8%to 25.5%within a decade.展开更多
基金supported by the National Natural Science Foundation of China(51672202,21673170)the Technological Innovation Key Project of Hubei Province,China(2016AAA041)the Fundamental Research Funds for the Central Universities,China(WUT:2016IVA085)~~
基金Funded by "Hundreds of Talents Program" of Hubei Province,China
文摘Long(15-40 μm), thin(diameter of 20 ± 5 nm), and well-dispersed CuNWs Cu nanowires were prepared. The high-resolution TEM and selected area electron diffraction showed that the CuNWs were single-crystalline. To investigate the growth mechanism, we examined the microstructure of these CuNWs at different reaction time. It was found that the CuNWs were actually formed through the self-assembling of Cu nanoparticles along the [110] direction. The transparent electrodes fabricated using the CuNWs achieved a high transparency of 76 % at 31±5 Ω/□.
基金supported by Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory (XHT2020-003 and XHT2020-005)the Fundamental Research Funds for the Central Universities (2020IVA068)+1 种基金the Creative Research Group Project of Natural Science Foundation of China (61821003)the National Natural Science Foundation of China (61775068 and 51802239)
文摘As a wide band gap semiconductor material,tin oxide(SnO_(2))has been widely used in gas sensing,optoelectronics and catalysis.The complex micro and nanoscale threedimensional(3D)geometric structures endow the conventional SnO_(2)ceramics with novel properties and functionalities.Nevertheless,ceramics cannot be cast or machined easily due to their high mechanical toughness and resistance.The additive manufacturing opens a great opportunity for flexibly geometrical shaping,while the arbitrary shaping of SnO_(2)ceramics at micro and nanoscale is always a challenge.Herein,preceramic monomers which can be polymerized under ultrafast laser irradiation,were utilized to form complex and arbitrary 3D preceramic polymer structures.After calcination treatment,these green-body structures could be converted into pure high-dense SnO_(2)ceramics with uniform shrinkage,and the feature size was down to submicron.Transmission electron microscopy(TEM)analysis displays that the printed SnO_(2)ceramic nanostructures can be nanocrystallized with grain sizes of 2.5±0.4 nm.This work provides the possibility of manufacturing 3D SnO_(2)ceramic nanostructures arbitrarily with sub-100 nm resolution,thus making it promising for the applications of SnO_(2)in different fields.
基金financial support from the National Key Research and Development Program of China (2018YFB1500104)the National Natural Science Foundation of China (51972251, 51702243, and 91963209)+1 种基金Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory (XHD2020-001)the Fundamental Research Funds for the Central Universities (2020Ⅲ0242D)
文摘Organic-inorganic hybrid perovskite materials have recently attracted extensive attentions because of their intriguing optoelectronic properties for photovoltaics[1],[2],[3].The power conversion efficiency(PCE)of perovskite solar cells(PSCs)experienced an incredible rise from 3.8%to 25.5%within a decade.