针对Cartographer算法在激光雷达的数据处理中存在的点云特征丢失的问题和低帧率激光雷达导致的运动畸变问题,提出一种改进激光同步定位与地图构建(simultaneous localization and mapping, SLAM)算法。采用k邻域搜索邻近点降采样的体...针对Cartographer算法在激光雷达的数据处理中存在的点云特征丢失的问题和低帧率激光雷达导致的运动畸变问题,提出一种改进激光同步定位与地图构建(simultaneous localization and mapping, SLAM)算法。采用k邻域搜索邻近点降采样的体素滤波方法代替Cartographer算法中的传统体素滤波方法,在不丢失点云特征的情况下提升计算速率;嵌入轮式里程计辅助模块去除激光雷达运动畸变,减少机器人的位姿累积误差,从而改善建图效果;最后,增加了边约束条件改善回环检测效果。通过在机器人操作系统中的gazebo搭建仿真环境进行模拟实验,对比两种算法,实验结果显示改进算法的建图轨迹误差更小。展开更多
文摘针对Cartographer算法在激光雷达的数据处理中存在的点云特征丢失的问题和低帧率激光雷达导致的运动畸变问题,提出一种改进激光同步定位与地图构建(simultaneous localization and mapping, SLAM)算法。采用k邻域搜索邻近点降采样的体素滤波方法代替Cartographer算法中的传统体素滤波方法,在不丢失点云特征的情况下提升计算速率;嵌入轮式里程计辅助模块去除激光雷达运动畸变,减少机器人的位姿累积误差,从而改善建图效果;最后,增加了边约束条件改善回环检测效果。通过在机器人操作系统中的gazebo搭建仿真环境进行模拟实验,对比两种算法,实验结果显示改进算法的建图轨迹误差更小。