有效的电力系统在线暂态稳定分析和临界割集识别算法对保证互联电力系统的安全稳定运行有着重要的意义。本文针对支路势能边界面方法(BPEBS)的不足,在支路势能函数和势能脊(RIDGE)方法的基础上,推导出了具有高可靠性的电力系统暂态稳定...有效的电力系统在线暂态稳定分析和临界割集识别算法对保证互联电力系统的安全稳定运行有着重要的意义。本文针对支路势能边界面方法(BPEBS)的不足,在支路势能函数和势能脊(RIDGE)方法的基础上,推导出了具有高可靠性的电力系统暂态稳定及临界割集识别判据——支路势能脊(BPR)判据。同时,定义了计算简单的支路和系统稳定度指标,并给出基于支路势能脊和支路稳定度指标的电力系统暂态稳定和临界割集识别算法。该算法建立在电力系统网络信息的动态响应轨迹的基础上,在已知电网结构参数的情况下,只需要实时获得电网母线电压幅值和相角即可进行电力系统暂态稳定状态和临界割集的实时分析和识别,由于无需进行两群失稳模式的假设,因此该算法对于多摆失稳和多群失稳模式依然适用。New England 10机系统的仿真算例验证了该算法的有效性。展开更多
文摘有效的电力系统在线暂态稳定分析和临界割集识别算法对保证互联电力系统的安全稳定运行有着重要的意义。本文针对支路势能边界面方法(BPEBS)的不足,在支路势能函数和势能脊(RIDGE)方法的基础上,推导出了具有高可靠性的电力系统暂态稳定及临界割集识别判据——支路势能脊(BPR)判据。同时,定义了计算简单的支路和系统稳定度指标,并给出基于支路势能脊和支路稳定度指标的电力系统暂态稳定和临界割集识别算法。该算法建立在电力系统网络信息的动态响应轨迹的基础上,在已知电网结构参数的情况下,只需要实时获得电网母线电压幅值和相角即可进行电力系统暂态稳定状态和临界割集的实时分析和识别,由于无需进行两群失稳模式的假设,因此该算法对于多摆失稳和多群失稳模式依然适用。New England 10机系统的仿真算例验证了该算法的有效性。