期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于APCNN和BiGRU-Att的单词DGA域名检测方法 被引量:6
1
作者 黄蔚秋 欧毓毅 凌捷 《计算机应用研究》 CSCD 北大核心 2022年第5期1541-1545,共5页
为了提高对基于单词的域名生成算法(domain generation algorithm,DGA)生成的恶意域名的检测准确率,提出了一种结合改进的并行卷积神经网络(APCNN)和融合简化注意力机制的双向门控循环单元(BiGRU-Att)的网络模型,该模型能充分学习单词... 为了提高对基于单词的域名生成算法(domain generation algorithm,DGA)生成的恶意域名的检测准确率,提出了一种结合改进的并行卷积神经网络(APCNN)和融合简化注意力机制的双向门控循环单元(BiGRU-Att)的网络模型,该模型能充分学习单词特征、单词之间的组合关系和关键字符信息。实验结果表明,相比Bilbo和CL模型,APCNN-BiGRU-Att模型的分类准确率和F_(1)值更高,表明该模型具有更好的检测效果、多分类效果和稳定性。 展开更多
关键词 基于单词的域名生成算法 域名检测 改进的并行卷积神经网络 注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部