The advent of transformation thermotics has seen a boom in development of thermal metamaterials with a variety of thermal functionalities,including phenomena such as thermal cloaking and camouflage.However,most therma...The advent of transformation thermotics has seen a boom in development of thermal metamaterials with a variety of thermal functionalities,including phenomena such as thermal cloaking and camouflage.However,most thermal metamaterials-based camouflage devices only tune in-plane heat conduction,which may fail to conceal a target from out-of-plane detection.We propose an adaptive radiative thermal camouflage via tuning out-ofplane transient heat conduction,and it is validated by both simulation and experiment.The physics underlying the performance of our adaptive thermal camouflage is based on real-time synchronous heat conduction through the camouflage device and the background plate,respectively.The proposed concept and device represent a promising new approach to fabrication of conductive thermal metamaterials,providing a feasible and effective way to achieve adaptive thermal camouflage.展开更多
In this work,we designed the elliptical thermal cloak based on the transformation thermotics.The local entropy generation rate distribution and entransy dissipation rate distribution were obtained,and the total entrop...In this work,we designed the elliptical thermal cloak based on the transformation thermotics.The local entropy generation rate distribution and entransy dissipation rate distribution were obtained,and the total entropy generation and entransy dissipation of different types of elliptical cloaks were evaluated.We used entropy generation approach and entransy dissipation approach to evaluate the performance of the thermal cloak,and heat dissipation analysis was carried out for models with different parameters.Finally,the optimized elliptical thermal cloak with minimum entropy generation and minimum entransy dissipation is found,and some suggestions on optimizing the structure of elliptical thermal cloak were given.展开更多
基金Supported by the National Natural Science Foundation of China(Grant No.52076087).
文摘The advent of transformation thermotics has seen a boom in development of thermal metamaterials with a variety of thermal functionalities,including phenomena such as thermal cloaking and camouflage.However,most thermal metamaterials-based camouflage devices only tune in-plane heat conduction,which may fail to conceal a target from out-of-plane detection.We propose an adaptive radiative thermal camouflage via tuning out-ofplane transient heat conduction,and it is validated by both simulation and experiment.The physics underlying the performance of our adaptive thermal camouflage is based on real-time synchronous heat conduction through the camouflage device and the background plate,respectively.The proposed concept and device represent a promising new approach to fabrication of conductive thermal metamaterials,providing a feasible and effective way to achieve adaptive thermal camouflage.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51606074 and 51625601)the Fund from the Ministry of Science and Technology of China(Grant No.2017YFE0100600)
文摘In this work,we designed the elliptical thermal cloak based on the transformation thermotics.The local entropy generation rate distribution and entransy dissipation rate distribution were obtained,and the total entropy generation and entransy dissipation of different types of elliptical cloaks were evaluated.We used entropy generation approach and entransy dissipation approach to evaluate the performance of the thermal cloak,and heat dissipation analysis was carried out for models with different parameters.Finally,the optimized elliptical thermal cloak with minimum entropy generation and minimum entransy dissipation is found,and some suggestions on optimizing the structure of elliptical thermal cloak were given.