期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
低信噪比下基于融合网络的音素识别方法
1
作者
黄辉波
邵玉斌
+1 位作者
龙华
杜庆治
《重庆邮电大学学报(自然科学版)》
CSCD
北大核心
2024年第4期786-796,共11页
针对低信噪比下音素识别准确率低的问题,提出一种新的识别方法。提取语音的Fbank特征,输入到由多头注意力机制、ResNet、BLSTM、CTC构建的A-R-B-CTC模型中进行音素识别,利用Wave-U-Net对语音特征Fbank、MFCC、GFCC、对数频谱进行图像去...
针对低信噪比下音素识别准确率低的问题,提出一种新的识别方法。提取语音的Fbank特征,输入到由多头注意力机制、ResNet、BLSTM、CTC构建的A-R-B-CTC模型中进行音素识别,利用Wave-U-Net对语音特征Fbank、MFCC、GFCC、对数频谱进行图像去噪,发现Fbank特征去噪后,可以取得更低的音素错误率。在0 dB白噪声环境下采用THCHS30数据集进行实验验证。结果表明,Fbank去噪前,所提A-R-B-CTC模型相比于BLSTM-CTC、ResNet-BLSTM-CTC、Transformer模型,平均音素错误率分别降低了4.38%、2.5%、1.96%;Fbank去噪后,4种模型的音素错误率明显下降,其中所提A-R-B-CTC模型相比于其他3种模型性能依旧出色。此外,在其他信噪比下也达到了不错的效果。
展开更多
关键词
音素识别
Wave-U-Net
端到端
多头自注意力机制
Transformer模型
下载PDF
职称材料
题名
低信噪比下基于融合网络的音素识别方法
1
作者
黄辉波
邵玉斌
龙华
杜庆治
机构
昆明理工大学信息工程与自动化学院
出处
《重庆邮电大学学报(自然科学版)》
CSCD
北大核心
2024年第4期786-796,共11页
基金
云南省媒体融合重点实验室项目(220235205)。
文摘
针对低信噪比下音素识别准确率低的问题,提出一种新的识别方法。提取语音的Fbank特征,输入到由多头注意力机制、ResNet、BLSTM、CTC构建的A-R-B-CTC模型中进行音素识别,利用Wave-U-Net对语音特征Fbank、MFCC、GFCC、对数频谱进行图像去噪,发现Fbank特征去噪后,可以取得更低的音素错误率。在0 dB白噪声环境下采用THCHS30数据集进行实验验证。结果表明,Fbank去噪前,所提A-R-B-CTC模型相比于BLSTM-CTC、ResNet-BLSTM-CTC、Transformer模型,平均音素错误率分别降低了4.38%、2.5%、1.96%;Fbank去噪后,4种模型的音素错误率明显下降,其中所提A-R-B-CTC模型相比于其他3种模型性能依旧出色。此外,在其他信噪比下也达到了不错的效果。
关键词
音素识别
Wave-U-Net
端到端
多头自注意力机制
Transformer模型
Keywords
phoneme recognition
Wave-U-Net
end-to-end
multi-headed self-attention
transformer model
分类号
TN912.3 [电子电信—通信与信息系统]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
低信噪比下基于融合网络的音素识别方法
黄辉波
邵玉斌
龙华
杜庆治
《重庆邮电大学学报(自然科学版)》
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部