叶面积指数(leaf area index,LAI)是森林生态系统重要参数,如何以较小成本提升区域尺度的山地森林LAI的遥感估测精度,对于精确掌握森林LAI的情况和进一步了解森林生态系统有重要意义。本研究以星载激光雷达ICESAT-2/ATLAS为主要信息源,...叶面积指数(leaf area index,LAI)是森林生态系统重要参数,如何以较小成本提升区域尺度的山地森林LAI的遥感估测精度,对于精确掌握森林LAI的情况和进一步了解森林生态系统有重要意义。本研究以星载激光雷达ICESAT-2/ATLAS为主要信息源,以西南山地香格里拉市为研究区,基于随机森林回归(random forest,RF)遥感估测模型,结合地面51块LAI实测样地数据,在前期进行RF超参数优化基础上,采用决定系数、均方根误差、绝对平均误差和中位数绝对误差作为模型精度评价指标,对估测效果进行分析。结果表明:使用随机表面查找算法进行RF回归模型的超参数优化,能明显提升模型估测LAI精度。提取出的地面光斑特征参数在山地森林LAI估测中有较高的贡献度和极佳的效果,可用于区域尺度的山地森林物理结构参数LAI的估测。同时,利用随机表面查找算法优化后的RF回归模型,估测精度更高,估测结果与研究区森林分布现状吻合,具有一定普适性。最后,研究确定了使用ICESat-2/ATLAS数据产品估测LAI是可行的,能为星载激光雷达估测中大范围的LAI提供一定的参考。展开更多
文摘叶面积指数(leaf area index,LAI)是森林生态系统重要参数,如何以较小成本提升区域尺度的山地森林LAI的遥感估测精度,对于精确掌握森林LAI的情况和进一步了解森林生态系统有重要意义。本研究以星载激光雷达ICESAT-2/ATLAS为主要信息源,以西南山地香格里拉市为研究区,基于随机森林回归(random forest,RF)遥感估测模型,结合地面51块LAI实测样地数据,在前期进行RF超参数优化基础上,采用决定系数、均方根误差、绝对平均误差和中位数绝对误差作为模型精度评价指标,对估测效果进行分析。结果表明:使用随机表面查找算法进行RF回归模型的超参数优化,能明显提升模型估测LAI精度。提取出的地面光斑特征参数在山地森林LAI估测中有较高的贡献度和极佳的效果,可用于区域尺度的山地森林物理结构参数LAI的估测。同时,利用随机表面查找算法优化后的RF回归模型,估测精度更高,估测结果与研究区森林分布现状吻合,具有一定普适性。最后,研究确定了使用ICESat-2/ATLAS数据产品估测LAI是可行的,能为星载激光雷达估测中大范围的LAI提供一定的参考。