We carefully investigate the transport and capacitance properties of few layer charge density wave (CDW) 2HTaS2 devices. The CDW transition temperature and the threshold voltage vary from device to device, which is ...We carefully investigate the transport and capacitance properties of few layer charge density wave (CDW) 2HTaS2 devices. The CDW transition temperature and the threshold voltage vary from device to device, which is attributed to the interlayer interaction and inhomogeneous local defects of these micro-devices based on few layer 2H-TaS2 flakes. The nonlinear rather than linear current voltage characteristic of 2H-TaS2 devices is observed in our experiment at low temperature. The temperature dependence of the relative threshold voltage can be scaled to (1 - T /Tr )^0.5+δ with δ = 0.08 for the different measured devices with the presence of the CDWs. The conductance-voltage and capacity-voltage measurements are performed simultaneously. At very low ac active voltage, we find that the hysteresis loops of these two measurements exactly match each other. Our results point out that the capacity-voltage measurements can also be used to define the threshold depinning voltage of the CDW, which gives us a new method to investigate the CDWs.展开更多
By using angle-resolvea photoemission spectroscopy(ARPES) combined with the first-principies electronic structure calculations,we report the quantized states at the surface of a single crystal 2 H-TaSe_(2).We have obs...By using angle-resolvea photoemission spectroscopy(ARPES) combined with the first-principies electronic structure calculations,we report the quantized states at the surface of a single crystal 2 H-TaSe_(2).We have observed sub-bands of quantized states at the three-dimensional Brillouin zone center due to a highly dispersive band with light effective mass along k_(z) direction.The quantized sub-bands shift upward towards E_(F) while the bulk band at Γ shifts downward with the decrease of temperature across charge density wave(CDW) formation.The band shifts could be intimately related to the CDW.While neither the two-dimensional Fermi-surface nesting nor purely strong electron-phonon coupling can explain the mechanism of CDW in 2 H-TaSe_(2),our experiment may ignite the interest in understanding the CDW mechanism in this family.展开更多
基金Supported by the National Basic Research Program of China under Grant Nos 2011CB922200, 2014CB643903 and 2011CBA00111, the National Natural Science Foundation of China under Grant Nos 11174272 and 61225021, the '100 Talents Project' of Chinese Academy of Sciences of China, the Joint Funds of the National Natural Science Foundation of China and the Chinese Academy of Sciences' Large-scale Scientific Facility under Grant No U1232139, and the Director's Fund of Hefei Institutes of Physical Science of Chinese Academy of Sciences under Grant No YZJJ201311.
文摘We carefully investigate the transport and capacitance properties of few layer charge density wave (CDW) 2HTaS2 devices. The CDW transition temperature and the threshold voltage vary from device to device, which is attributed to the interlayer interaction and inhomogeneous local defects of these micro-devices based on few layer 2H-TaS2 flakes. The nonlinear rather than linear current voltage characteristic of 2H-TaS2 devices is observed in our experiment at low temperature. The temperature dependence of the relative threshold voltage can be scaled to (1 - T /Tr )^0.5+δ with δ = 0.08 for the different measured devices with the presence of the CDWs. The conductance-voltage and capacity-voltage measurements are performed simultaneously. At very low ac active voltage, we find that the hysteresis loops of these two measurements exactly match each other. Our results point out that the capacity-voltage measurements can also be used to define the threshold depinning voltage of the CDW, which gives us a new method to investigate the CDWs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774421,11774424,11574394,11774423,11822412,and 11874047)the National Key R&D Program of China(Grant Nos.2016YFA0401002,2018YFA0307000,2016YFA0300504,and 2018FYA0305800)the Fundamental Research Funds for the Central Universities,China(Grant No.2042018kf-0030)。
文摘By using angle-resolvea photoemission spectroscopy(ARPES) combined with the first-principies electronic structure calculations,we report the quantized states at the surface of a single crystal 2 H-TaSe_(2).We have observed sub-bands of quantized states at the three-dimensional Brillouin zone center due to a highly dispersive band with light effective mass along k_(z) direction.The quantized sub-bands shift upward towards E_(F) while the bulk band at Γ shifts downward with the decrease of temperature across charge density wave(CDW) formation.The band shifts could be intimately related to the CDW.While neither the two-dimensional Fermi-surface nesting nor purely strong electron-phonon coupling can explain the mechanism of CDW in 2 H-TaSe_(2),our experiment may ignite the interest in understanding the CDW mechanism in this family.