期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于知识增强的中文电子病历命名实体识别
1
作者 李宛泽 宋波 齐岳山 《计算机系统应用》 2023年第12期112-119,共8页
针对中文电子病历中医疗嵌套实体难以处理的问题,本文基于RoBERTa-wwm-ext-large预训练模型提出一种知识增强的中文电子病历命名实体识别模型ERBEGP.RoBERTa-wwm-ext-large采用的全词掩码策略能够获得词级别的语义表示,更适用于中文文本... 针对中文电子病历中医疗嵌套实体难以处理的问题,本文基于RoBERTa-wwm-ext-large预训练模型提出一种知识增强的中文电子病历命名实体识别模型ERBEGP.RoBERTa-wwm-ext-large采用的全词掩码策略能够获得词级别的语义表示,更适用于中文文本.首先结合知识图谱,使模型学习到了大量的医疗实体名词,进一步提高模型对电子病历实体识别的准确性.然后通过BiLSTM对电子病历输入序列编码,能够更好捕获病历的中上下语义信息.最后利用全局指针网络模型EGP(efficient GlobalPointer)同时考虑实体的头部和尾部的特征信息来预测嵌套实体,更加有效地解决中文电子病历命名实体识别任务中嵌套实体难以处理的问题.在CBLUE中的4个数据集上本文方法均取得了更好的识别效果,证明了ERBEGP模型的有效性. 展开更多
关键词 中文电子病历 命名实体识别 知识增强 嵌套实体 全局指针网络模型 深度学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部