应用近红外光谱分析技术,建立了不同品牌不同种类不同批次的乳粉原样和混合样的蛋白质定量分析模型。采用正交投影偏最小二乘法(orthogonal partial least squares,OPLS)建立近红外光谱回归模型,并与其他预处理方法和传统偏最小二乘法(p...应用近红外光谱分析技术,建立了不同品牌不同种类不同批次的乳粉原样和混合样的蛋白质定量分析模型。采用正交投影偏最小二乘法(orthogonal partial least squares,OPLS)建立近红外光谱回归模型,并与其他预处理方法和传统偏最小二乘法(partial least squares,PLS)对比;采用交叉验证法(cross-validation)全局寻优方式获得OPLS和PLS模型的最佳参数;5个主成分建立的OPLS校正模型效果最佳,相关系数R为0.994 0,校正集交叉验证均方根RMSECV为1.09,预测集的化学值与模型预测值的相关系数R达到0.976 7,分析模型的预测误差均方根RMSEP为0.905。结果表明:OPLS回归方法在简化模型的同时提高了模型的预测泛化性能,能够快速无损建立乳粉的蛋白质近红外定量模型。展开更多
文摘应用近红外光谱分析技术,建立了不同品牌不同种类不同批次的乳粉原样和混合样的蛋白质定量分析模型。采用正交投影偏最小二乘法(orthogonal partial least squares,OPLS)建立近红外光谱回归模型,并与其他预处理方法和传统偏最小二乘法(partial least squares,PLS)对比;采用交叉验证法(cross-validation)全局寻优方式获得OPLS和PLS模型的最佳参数;5个主成分建立的OPLS校正模型效果最佳,相关系数R为0.994 0,校正集交叉验证均方根RMSECV为1.09,预测集的化学值与模型预测值的相关系数R达到0.976 7,分析模型的预测误差均方根RMSEP为0.905。结果表明:OPLS回归方法在简化模型的同时提高了模型的预测泛化性能,能够快速无损建立乳粉的蛋白质近红外定量模型。