Silicon-based carbon composites are believed as promising anodes in the near future due to their outstanding specific capacity and relatively lower volume effect compared to pure silicon anodes.Herein,a multilayer sph...Silicon-based carbon composites are believed as promising anodes in the near future due to their outstanding specific capacity and relatively lower volume effect compared to pure silicon anodes.Herein,a multilayer spherical core-shell(M-SCS)electrode with a graphite framework prepared with Si@O-MCMB/C nanoparticles is developed,which aims to realize chemically/mechanically stability during the lithiation/delithiation process with high specific capacity.An electrochemical-/mechanical-coupling model for the M-SCS structure is established with various chemical/mechanical boundary conditions.The simulation of finite difference method(FDM)has been conducted based on the proposed coupling model,by which the diffusion-induced stress along both the radial and the circumferential directions is determined.Moreover,factors that influence the diffusion-induced stress of the M-SCS structure have been discussed and analyzed in detail.展开更多
Inspired that the neck structure can stabilize the head from body movements and external dynamic vibration by the role of intervertebral disc and surrounding muscles,a novel multi-layer structure with nonlinear elasti...Inspired that the neck structure can stabilize the head from body movements and external dynamic vibration by the role of intervertebral disc and surrounding muscles,a novel multi-layer structure with nonlinear elastic components is proposed in this paper.The proposed structure is expected for loading the weight of the end effector and isolating bending vibration with lowfrequency in the range of 0.1 Hz to 1 Hz.First,considering the loading,the potential energy,restoring force,and structural configuration in axial direction are defined.Then,the dynamical restoring force and stiffness for bending are modelled for different structural parameters and configurations after the axial weight.According to the functions of the proposed structure required in applications including loading capacity and bending vibration isolation effectiveness,design criteria are carried out.Due to the realization of high-order quasi-zero stiffness property,the effective isolation band for bending vibration can be extended from about 0.08 Hz.In addition,based on the proposed design criteria,the constructed multi-layer structure displays remarkable dynamical stabilization effectiveness in ultralow frequency band.The proposed structure not only provides the biological explanations for car sickness,nausea,and airsickness of humans,but also solves the bottleneck techniques in bioinspired nonlinear isolation structural design for transverse dynamical stabilization,which has remarkable potential applications in the fields of mechanical arm,sensors in satellite etc.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12072229 and 11602167).
文摘Silicon-based carbon composites are believed as promising anodes in the near future due to their outstanding specific capacity and relatively lower volume effect compared to pure silicon anodes.Herein,a multilayer spherical core-shell(M-SCS)electrode with a graphite framework prepared with Si@O-MCMB/C nanoparticles is developed,which aims to realize chemically/mechanically stability during the lithiation/delithiation process with high specific capacity.An electrochemical-/mechanical-coupling model for the M-SCS structure is established with various chemical/mechanical boundary conditions.The simulation of finite difference method(FDM)has been conducted based on the proposed coupling model,by which the diffusion-induced stress along both the radial and the circumferential directions is determined.Moreover,factors that influence the diffusion-induced stress of the M-SCS structure have been discussed and analyzed in detail.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.12122208 and 11972254)。
文摘Inspired that the neck structure can stabilize the head from body movements and external dynamic vibration by the role of intervertebral disc and surrounding muscles,a novel multi-layer structure with nonlinear elastic components is proposed in this paper.The proposed structure is expected for loading the weight of the end effector and isolating bending vibration with lowfrequency in the range of 0.1 Hz to 1 Hz.First,considering the loading,the potential energy,restoring force,and structural configuration in axial direction are defined.Then,the dynamical restoring force and stiffness for bending are modelled for different structural parameters and configurations after the axial weight.According to the functions of the proposed structure required in applications including loading capacity and bending vibration isolation effectiveness,design criteria are carried out.Due to the realization of high-order quasi-zero stiffness property,the effective isolation band for bending vibration can be extended from about 0.08 Hz.In addition,based on the proposed design criteria,the constructed multi-layer structure displays remarkable dynamical stabilization effectiveness in ultralow frequency band.The proposed structure not only provides the biological explanations for car sickness,nausea,and airsickness of humans,but also solves the bottleneck techniques in bioinspired nonlinear isolation structural design for transverse dynamical stabilization,which has remarkable potential applications in the fields of mechanical arm,sensors in satellite etc.