期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于贝叶斯网络的肾综合征出血热发病率预测模型研究 被引量:6
1
作者 李皓晨 齐滢滢 +5 位作者 张翀 韩文菊 沈铁峰 李德强 关鹏 黄德生 《中国媒介生物学及控制杂志》 CAS 北大核心 2021年第4期475-480,共6页
目的利用贝叶斯网络研究辽宁省葫芦岛市肾综合征出血热(HFRS)的影响因素并构建发病率预测模型。方法收集葫芦岛市2008年1-10月HFRS监测点的发病数据、宿主疫情数据及气象数据,采用禁忌搜索算法对贝叶斯网络进行结构学习,采用最大似然估... 目的利用贝叶斯网络研究辽宁省葫芦岛市肾综合征出血热(HFRS)的影响因素并构建发病率预测模型。方法收集葫芦岛市2008年1-10月HFRS监测点的发病数据、宿主疫情数据及气象数据,采用禁忌搜索算法对贝叶斯网络进行结构学习,采用最大似然估计对贝叶斯网络进行参数学习。结果葫芦岛市HFRS发病与鼠密度、当月的平均风速和日照时数、滞后1个月的平均最高气温、相对湿度和归一化植被指数、滞后2个月的平均气温、平均最低气温、平均气压和降水量在0.01水平上相关,相关系数分别为0.691、0.689、0.345、-0.635、-0.631、-0.674、-0.714、-0.746、0.650和-0.643。利用气象和宿主资料对HFRS发病率进行预测时,贝叶斯网络模型的预测准确率为85.00%(17/20),精确率为83.33%(10/12),受试者工作特征曲线下面积为0.919。结论基于贝叶斯网络构建的发病率预测模型对葫芦岛市HFRS的预测准确率较高,对HFRS的防控有一定的参考价值。 展开更多
关键词 贝叶斯网络 肾综合征出血热 发病率 预测
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部