期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
离散小波去噪后冬小麦叶片含水量高光谱估算
1
作者 王延仓 朱玉晨 +8 位作者 齐焱鑫 张志通 曹会琼 王金杲 顾晓鹤 唐瑞尹 何跃君 李笑芳 罗巍 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第9期2559-2567,共9页
光谱噪声去除是遥感区域应用的必要过程,噪声去除效果能直接影响区域地表信息的监测精度。为分析离散小波算法对光谱数据的分解机理,探寻基于离散小波算法光谱噪声信息去除与光谱处理方法,以冬小麦冠层光谱与叶片含水量为数据源,先利用... 光谱噪声去除是遥感区域应用的必要过程,噪声去除效果能直接影响区域地表信息的监测精度。为分析离散小波算法对光谱数据的分解机理,探寻基于离散小波算法光谱噪声信息去除与光谱处理方法,以冬小麦冠层光谱与叶片含水量为数据源,先利用离散小波算法对光谱数据进行去噪处理,采用的小波基为Meyer;然后以Meyer、Sym2、Coif2为小波基对去噪后的光谱数据进行信息分离,并结合相关性分析算法、偏最小二乘算法构建冬小麦叶片含水量估测模型,研究结论如下:(1)在离散小波算法下,合并的光谱曲线随合并尺度数的不断增加,原光谱曲线局部的大、中、小特征依次凸显;随H10—H1分解尺度的依次加入,分解信息对合并曲线的修正幅度也逐步减弱,其中,将H3—H1依次合并后,合并的光谱曲线几乎无变动。(2)提出的去噪方法可在一定程度上改变了部分光谱对冬小麦叶片含水量的敏感性及敏感波段的分布:其中在1~3尺度内,降低了光谱对冬小麦叶片含水量的敏感性,改变了敏感波段的波段位置的分布情况。在4~10尺度内,能明显提升光谱对冬小麦叶片含水量的敏感性(Coif2);提出的去噪方法可提升局部波段对冬小麦叶片含水量的敏感性(Sym2)。(3)提出的去噪方法能明显提升光谱对模型的稳定性,能提升Sym2、Coif2小波基内最优模型的精度与稳定性,其中验证精度提高了8.6%(Sym2)、34.1%(Coif2),表明该研究提出的去噪处理是有效的。 展开更多
关键词 冬小麦 叶片含水量 离散小波 噪声信息 高光谱
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部