期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
油气场站火灾爆炸风险的神经支持决策树识别与预测
1
作者 闵超 张乾 +3 位作者 黄鑫 龙梦舒 李柯江 刘凤珠 《安全与环境学报》 CAS CSCD 北大核心 2024年第7期2574-2584,共11页
为了有效防控油气场站火灾爆炸事故,从影响因素之间因果关系的角度出发,提出利用神经支持决策树(Neural-Backed Decision Tree,NBDT)算法构建油气火灾爆炸可解释预测模型。该方法利用词频逆向文件频率(Term Frequency-Inverse Document ... 为了有效防控油气场站火灾爆炸事故,从影响因素之间因果关系的角度出发,提出利用神经支持决策树(Neural-Backed Decision Tree,NBDT)算法构建油气火灾爆炸可解释预测模型。该方法利用词频逆向文件频率(Term Frequency-Inverse Document Frequency,TF-IDF)算法从风险描述信息中提取出关键词并计算权重,整合得到64个风险二级因素,构建了油气场站的火灾爆炸数据集;采用神经支持决策树算法构建分类模型,对油气场站火灾爆炸事故进行预测和可解释分析,可以基于数据可视化地分析油气火灾爆炸事故的风险与诱因。结果表明,NBDT模型预测准确率为0.976,AUC为0.913,明显优于其他模型;模型可视化结果分别从单因素和多因素角度分析,确立7种二级风险主控因素和6种二级风险组合主控因素。13种风险主控因素的确立,可以为既有油气场站火灾爆炸预测和防控机制提供理论支撑。 展开更多
关键词 安全工程 油气爆炸 风险因素 关联规则 可解释性 神经支持决策树(NBDT)
下载PDF
基于机器学习的汽油加氢裂化辛烷值损失预测和脱硫优化 被引量:5
2
作者 龙梦舒 闵超 +2 位作者 赵伟 张馨慧 代博仁 《科学技术与工程》 北大核心 2022年第3期1076-1084,共9页
辛烷值损失的准确预测有助于汽油炼制过程的优化与控制,以达到更好的脱硫效果。原油的加氢脱硫是一个十分复杂的物化反应过程,对于该过程中的参数控制多依赖于工人的经验,因此基于大数据建立辛烷值损失预测模型可以用于优化脱硫效果,从... 辛烷值损失的准确预测有助于汽油炼制过程的优化与控制,以达到更好的脱硫效果。原油的加氢脱硫是一个十分复杂的物化反应过程,对于该过程中的参数控制多依赖于工人的经验,因此基于大数据建立辛烷值损失预测模型可以用于优化脱硫效果,从而提高产品质量,减轻工人的劳动强度,具有十分重大的实际意义。采用单因素分析、方差过滤、随机森林等方法进行了特征筛选,最后基于逻辑回归、BP(back propagation)神经网络以及支持向量机(support vector machine,SVM)三种机器学习算法构建了辛烷值损失预测模型。实验结果表明,基于SVM建立的辛烷值损失预测模型精度达到了98.24%,优于逻辑回归和BP神经网络预测模型。将该模型应用于脱硫优化,在生成汽油的硫含量达标的情况下,获得最优的控制变量组合,达到将辛烷值损失降到最低的目的。 展开更多
关键词 辛烷值 预测 加氢脱硫 机器学习 优化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部