Let D be N+1 connected bounded domain in plane. Suppose the contour of D consists of N+1 simple-ly closed curves <sub>0</sub>, <sub>1</sub>…, <sub>N</sub> and <sub>1</s...Let D be N+1 connected bounded domain in plane. Suppose the contour of D consists of N+1 simple-ly closed curves <sub>0</sub>, <sub>1</sub>…, <sub>N</sub> and <sub>1</sub>… <sub>N</sub> are in the interior of domain circumscribed byC<sub>μ</sub><sup>1</sup>(0 【μ【 1). In addition, assume that there are n mutually exclusive contour γ<sub>,</sub>j=1,…,n,in interi-or of D,γ=γ<sub>i</sub>; ∈C<sub>μ</sub><sup>1</sup>. Denote D<sub>j</sub> is the bounded domain circumscribed by γ<sub>j</sub>,j=1,…,n, D<sup>-</sup>=D<sub>1</sub>+…+D.,D<sup>+</sup>=D-D<sup>-</sup>,D<sub>t</sub><sup> </sup>=D<sup> </sup>×E, E=[0,T] (T】0), z=0∈D<sup>+</sup>.We consider the following pseudoparabolic complex equation on D<sub>t</sub><sup> </sup> : / t[W<sub>Z</sub>- Q<sub>1</sub>(z)W<sub>z</sub>- Q<sub>2</sub>(z) <sub> </sub>- A<sub>1</sub>(z)W - A<sub>2</sub>(Z) ]= H(t,z,W,W-<sub>2</sub>,W<sub>2</sub>), (z,t) ∈D<sub>t</sub><sup> </sup>, (1)展开更多
文摘Let D be N+1 connected bounded domain in plane. Suppose the contour of D consists of N+1 simple-ly closed curves <sub>0</sub>, <sub>1</sub>…, <sub>N</sub> and <sub>1</sub>… <sub>N</sub> are in the interior of domain circumscribed byC<sub>μ</sub><sup>1</sup>(0 【μ【 1). In addition, assume that there are n mutually exclusive contour γ<sub>,</sub>j=1,…,n,in interi-or of D,γ=γ<sub>i</sub>; ∈C<sub>μ</sub><sup>1</sup>. Denote D<sub>j</sub> is the bounded domain circumscribed by γ<sub>j</sub>,j=1,…,n, D<sup>-</sup>=D<sub>1</sub>+…+D.,D<sup>+</sup>=D-D<sup>-</sup>,D<sub>t</sub><sup> </sup>=D<sup> </sup>×E, E=[0,T] (T】0), z=0∈D<sup>+</sup>.We consider the following pseudoparabolic complex equation on D<sub>t</sub><sup> </sup> : / t[W<sub>Z</sub>- Q<sub>1</sub>(z)W<sub>z</sub>- Q<sub>2</sub>(z) <sub> </sub>- A<sub>1</sub>(z)W - A<sub>2</sub>(Z) ]= H(t,z,W,W-<sub>2</sub>,W<sub>2</sub>), (z,t) ∈D<sub>t</sub><sup> </sup>, (1)