针对电力负荷预测粒子群优化最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)模型输入节点难以确定的问题,提出了一种基于数据分组处理方法(Group Method of Data Handling,GMDH)来优化PSO-LSSVM(Particle Swarm Optim...针对电力负荷预测粒子群优化最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)模型输入节点难以确定的问题,提出了一种基于数据分组处理方法(Group Method of Data Handling,GMDH)来优化PSO-LSSVM(Particle Swarm Optimization-Least Squares Support Vector Machine)的中长期电力负荷预测预测方法。该方法是首先利用GMDH算法获得LSSVM建模中的输入变量;然后利用基于自适应变异的PSO算法对LSSVM建模中的参数进行优化,选用某地区2008~2013年的历史数据作为模型的训练样本建立模型;最后使用训练好的GMDHPSO-LSSVM模型对2014、2015年的用电量进行外推预测。组合模型预测结果表明该方法达到了较高的预测精度,预测精度提高了2.21%。展开更多
文摘针对电力负荷预测粒子群优化最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)模型输入节点难以确定的问题,提出了一种基于数据分组处理方法(Group Method of Data Handling,GMDH)来优化PSO-LSSVM(Particle Swarm Optimization-Least Squares Support Vector Machine)的中长期电力负荷预测预测方法。该方法是首先利用GMDH算法获得LSSVM建模中的输入变量;然后利用基于自适应变异的PSO算法对LSSVM建模中的参数进行优化,选用某地区2008~2013年的历史数据作为模型的训练样本建立模型;最后使用训练好的GMDHPSO-LSSVM模型对2014、2015年的用电量进行外推预测。组合模型预测结果表明该方法达到了较高的预测精度,预测精度提高了2.21%。