The soft deposition of Cu clusters on a Si (001) surface was studied by molecular dynamics simulations. The embedded atom method, the Stillinger-Weber and the Lennar-Jones potentials were used to describe the intera...The soft deposition of Cu clusters on a Si (001) surface was studied by molecular dynamics simulations. The embedded atom method, the Stillinger-Weber and the Lennar-Jones potentials were used to describe the interactions between the cluster atoms, between the substrate atoms, and between the cluster and the substrate atoms, respectively. The Cu13, Cu55, and Cu147 clusters were investigated at different substrate temperatures. We found that the substrate temperature had a significant effect on the Cn147 cluster. For smaller Cu13 and Cu55 clusters, the substrate temperature in the range of study appeared to have little effect on the mean center-of-mass height. The clusters showed better degrees of epitaxy at 800 K. With the same substrate temperature, the Cu55 cluster demonstrated the highest degree of epitaxy, followed by Cu147 and then Cu13 clusters. In addition, the Cu55 cluster showed the lowest mean center-of-mass height. These results suggested that the Cu55 cluster is a better choice for the thin-film formation among the clusters considered. Our studies may provide insight into the formation of desired Cu thin films on a Si substrate.展开更多
In this work, a systematic study of some possible isomer structures of the Cu5 cluster obtained from density functional theory methods is presented. The polarisation and pseudopotential basis sets are employed in the ...In this work, a systematic study of some possible isomer structures of the Cu5 cluster obtained from density functional theory methods is presented. The polarisation and pseudopotential basis sets are employed in the calculations. The results show that the binding energies, frequencies, coordination numbers and average bond lengths are in reasonable agreement with reported experimental data. Moreover, four isomers of the Cu5 cluster are obtained according to calculations, in which the most stable configuration is the planar structure. Meanwhile, two three-dimensional structures of the Cu5 cluster are obtained in this work, which might be valuable for further theoretical and experimental studies. In addition, our study proves the possibility of the isomer structures of the Cu5 cluster.展开更多
We investigated the effect of grain boundary structures on the trapping strength of HeN(N is the number of helium atoms) defects in the grain boundaries of nickel. The results suggest that the binding energy of an i...We investigated the effect of grain boundary structures on the trapping strength of HeN(N is the number of helium atoms) defects in the grain boundaries of nickel. The results suggest that the binding energy of an interstitial helium atom to the grain boundary plane is the strongest among all sites around the plane. The He_N defect is much more stable in nickel bulk than in the grain boundary plane. Besides, the binding energy of an interstitial helium atom to a vacancy is stronger than that to a grain boundary plane. The binding strength between the grain boundary and the HeN defect increases with the defect size. Moreover, the binding strength of the HeN defect to the Σ3(112)[110] grain boundary becomes much weaker than that to other grain boundaries as the defect size increases.展开更多
We have investigated the expansion and bursting of a helium nano-bubble near the surface of a nickel matrix using a molecular dynamics simulation. The helium atoms erupt from the bubble in an instantaneous and volcano...We have investigated the expansion and bursting of a helium nano-bubble near the surface of a nickel matrix using a molecular dynamics simulation. The helium atoms erupt from the bubble in an instantaneous and volcano-like process,which leads to surface deformation consisting of cavity formation on the surface, along with modification and atomic rearrangement at the periphery of the cavity. During the kinetic releasing process, the channel may undergo the "open" and"close" states more than once due to the variation of the stress inside the nano-bubble. The ratio between the number of helium atoms and one of vacancies can directly reflect the releasing rate under different temperatures and crystallographic orientation conditions, respectively. Moreover, a special relationship between the stress and He-to-vacancy ratio is also determined. This model is tested to compare with the experimental result from Hastelloy N alloys implanted by helium ions and satisfactory agreement is obtained.展开更多
The interactions of He with dissociated screw dislocations in face-centered-cubic (fcc) Ni are investigated by using molecular dynamics simulations based on an embedded-atom method model. The binding and formation e...The interactions of He with dissociated screw dislocations in face-centered-cubic (fcc) Ni are investigated by using molecular dynamics simulations based on an embedded-atom method model. The binding and formation energies of interstitial He in and near Shockley partial cores are calculated. The results show that interstitial He atoms at tetrahedral sites in the perfect fee lattice and atoms occupying sites one plane above or below one of the two Shockley partial cores exhibit the strongest binding energy. The attractive or repulsive nature of the interaction between interstitial He and the screw dislocation depends on the relative position of He to these strong binding sites. In addition, the effect of He on the dissociation of screw dislocations are investigated. It is found that Fie atoms homogeneously distributed in the glide plane can reduce the stacking fault width.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 10375028)the US National Science Foundation Award (Grant No. CMMI-0700048)
文摘The soft deposition of Cu clusters on a Si (001) surface was studied by molecular dynamics simulations. The embedded atom method, the Stillinger-Weber and the Lennar-Jones potentials were used to describe the interactions between the cluster atoms, between the substrate atoms, and between the cluster and the substrate atoms, respectively. The Cu13, Cu55, and Cu147 clusters were investigated at different substrate temperatures. We found that the substrate temperature had a significant effect on the Cn147 cluster. For smaller Cu13 and Cu55 clusters, the substrate temperature in the range of study appeared to have little effect on the mean center-of-mass height. The clusters showed better degrees of epitaxy at 800 K. With the same substrate temperature, the Cu55 cluster demonstrated the highest degree of epitaxy, followed by Cu147 and then Cu13 clusters. In addition, the Cu55 cluster showed the lowest mean center-of-mass height. These results suggested that the Cu55 cluster is a better choice for the thin-film formation among the clusters considered. Our studies may provide insight into the formation of desired Cu thin films on a Si substrate.
基金supported by the National Natural Science Foundation of China (Grant No. 10375028)
文摘In this work, a systematic study of some possible isomer structures of the Cu5 cluster obtained from density functional theory methods is presented. The polarisation and pseudopotential basis sets are employed in the calculations. The results show that the binding energies, frequencies, coordination numbers and average bond lengths are in reasonable agreement with reported experimental data. Moreover, four isomers of the Cu5 cluster are obtained according to calculations, in which the most stable configuration is the planar structure. Meanwhile, two three-dimensional structures of the Cu5 cluster are obtained in this work, which might be valuable for further theoretical and experimental studies. In addition, our study proves the possibility of the isomer structures of the Cu5 cluster.
基金Project supported by the Program of International S&T Cooperation,China(Grant No.2014DFG60230)the National Basic Research Program of China(Grant No.2010CB934504)+2 种基金Strategically Leading Program of the Chinese Academy of Sciences(Grant No.XDA02040100)the Shanghai Municipal Science and Technology Commission,China(Grant No.13ZR1448000)the National Natural Science Foundation of China(Grant Nos.91326105 and 21306220)
文摘We investigated the effect of grain boundary structures on the trapping strength of HeN(N is the number of helium atoms) defects in the grain boundaries of nickel. The results suggest that the binding energy of an interstitial helium atom to the grain boundary plane is the strongest among all sites around the plane. The He_N defect is much more stable in nickel bulk than in the grain boundary plane. Besides, the binding energy of an interstitial helium atom to a vacancy is stronger than that to a grain boundary plane. The binding strength between the grain boundary and the HeN defect increases with the defect size. Moreover, the binding strength of the HeN defect to the Σ3(112)[110] grain boundary becomes much weaker than that to other grain boundaries as the defect size increases.
基金Project supported by the Program of International Science and Technology Cooperation of China(Grant No.2014DFG60230)the National Basic Research Program of China(Grant No.2010CB934504)+2 种基金the Strategically Leading Program of the Chinese Academy of Sciences(Grant No.XDA02040100)the Shanghai Municipal Science and Technology Commission,China(Grant No.13ZR1448000)the National Natural Science Foundation of China(Grant Nos.91326105 and 21306220)
文摘We have investigated the expansion and bursting of a helium nano-bubble near the surface of a nickel matrix using a molecular dynamics simulation. The helium atoms erupt from the bubble in an instantaneous and volcano-like process,which leads to surface deformation consisting of cavity formation on the surface, along with modification and atomic rearrangement at the periphery of the cavity. During the kinetic releasing process, the channel may undergo the "open" and"close" states more than once due to the variation of the stress inside the nano-bubble. The ratio between the number of helium atoms and one of vacancies can directly reflect the releasing rate under different temperatures and crystallographic orientation conditions, respectively. Moreover, a special relationship between the stress and He-to-vacancy ratio is also determined. This model is tested to compare with the experimental result from Hastelloy N alloys implanted by helium ions and satisfactory agreement is obtained.
基金Supported by the Program of International S&T Cooperation under Grant No 2014DFG60230the Strategically Leading Program of the Chinese Academy of Sciences under Grant No XDA02040100+1 种基金the Shanghai Municipal Science and Technology Commission under Grant No 13ZR1448000the National Natural Science Foundation of China under Grant No 11505266
文摘The interactions of He with dissociated screw dislocations in face-centered-cubic (fcc) Ni are investigated by using molecular dynamics simulations based on an embedded-atom method model. The binding and formation energies of interstitial He in and near Shockley partial cores are calculated. The results show that interstitial He atoms at tetrahedral sites in the perfect fee lattice and atoms occupying sites one plane above or below one of the two Shockley partial cores exhibit the strongest binding energy. The attractive or repulsive nature of the interaction between interstitial He and the screw dislocation depends on the relative position of He to these strong binding sites. In addition, the effect of He on the dissociation of screw dislocations are investigated. It is found that Fie atoms homogeneously distributed in the glide plane can reduce the stacking fault width.