期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于位置注意力机制的混合神经网络心电信号分类算法
1
作者
龚玉晓
高淑萍
《中国生物医学工程学报》
CAS
CSCD
北大核心
2024年第3期295-305,共11页
心电信号分类是医疗保健领域的重要研究内容。心电信号数据是类不平衡数据,不同类别的心律失常依赖于心电图的长期变化特征,局部变化特征及其相对位置。针对大多数方法不能较好地解决数据类不平衡,且未考虑特定波形重要性等问题,提出一...
心电信号分类是医疗保健领域的重要研究内容。心电信号数据是类不平衡数据,不同类别的心律失常依赖于心电图的长期变化特征,局部变化特征及其相对位置。针对大多数方法不能较好地解决数据类不平衡,且未考虑特定波形重要性等问题,提出一种基于位置注意力机制的混合神经网络心电信号分类(DCLB)算法。首先,利用深度卷积生成对抗网络扩充数量少的类别样本,从而解决类不平衡问题;其次,利用二维卷积神经网络和双向长短期记忆网络进行特征提取,从而获得心电信号的局部变化特征和长期变化特征;然后,在每个二维卷积神经网络后嵌入位置注意力机制,从而提高关键位置特征的重要程度;最后,利用全连接网络输出分类结果。对MIT-BIH心律失常数据集中的30584个样本的实验结果表明,DCLB算法的平均准确率为98.79%,敏感性为94.21%,特异性为98.98%,阳性预测值为93.70%。该模型可以有效提取心电信号特征,适用于监测系统中心律失常疾病的诊断。
展开更多
关键词
心电信号
类不平衡
深度卷积生成对抗网络
注意力机制
深度学习
下载PDF
职称材料
基于改进深度残差收缩网络的心电信号分类算法
2
作者
龚玉晓
高淑萍
《应用数学和力学》
CSCD
北大核心
2023年第8期977-988,共12页
心电信号分类是医疗保健领域的重要研究内容.针对大多数方法不能很好地降低样本数量少的类别漏诊率,以及降低预处理操作的复杂性问题,提出了一种基于改进深度残差收缩网络(IDRSN)的心电信号分类算法(即DRSL算法).首先,使用合成少数类过...
心电信号分类是医疗保健领域的重要研究内容.针对大多数方法不能很好地降低样本数量少的类别漏诊率,以及降低预处理操作的复杂性问题,提出了一种基于改进深度残差收缩网络(IDRSN)的心电信号分类算法(即DRSL算法).首先,使用合成少数类过采样技术(SMOTE)扩充数量少的类别样本,从而解决了类不平衡问题;其次,利用改进深度残差收缩网络提取空间特征,其残差模块可以避免网络层加深造成的过拟合,压缩激励和软阈值化子网络可以提取重要局部特征并自动去除噪声;然后,通过长短期记忆网络(LSTM)提取时间特征;最后,利用全连接网络输出分类结果.在MIT-BIH心律失常数据集上的实验结果表明,该算法的分类性能优于IDRSN、DRSN、GAN+2DCNN、CNN+LSTM_ATTENTION、SE-CNN-LSTM分类算法.
展开更多
关键词
心电信号
合成少数类过采样技术
深度残差收缩网络
压缩激励
长短期记忆网络
下载PDF
职称材料
题名
基于位置注意力机制的混合神经网络心电信号分类算法
1
作者
龚玉晓
高淑萍
机构
西安电子科技大学数学与统计学院
出处
《中国生物医学工程学报》
CAS
CSCD
北大核心
2024年第3期295-305,共11页
基金
国家自然科学基金(91338115)
高等学校学科创新引智基地“111”计划(B08038)
陕西省横向项目(HX 10202001030)。
文摘
心电信号分类是医疗保健领域的重要研究内容。心电信号数据是类不平衡数据,不同类别的心律失常依赖于心电图的长期变化特征,局部变化特征及其相对位置。针对大多数方法不能较好地解决数据类不平衡,且未考虑特定波形重要性等问题,提出一种基于位置注意力机制的混合神经网络心电信号分类(DCLB)算法。首先,利用深度卷积生成对抗网络扩充数量少的类别样本,从而解决类不平衡问题;其次,利用二维卷积神经网络和双向长短期记忆网络进行特征提取,从而获得心电信号的局部变化特征和长期变化特征;然后,在每个二维卷积神经网络后嵌入位置注意力机制,从而提高关键位置特征的重要程度;最后,利用全连接网络输出分类结果。对MIT-BIH心律失常数据集中的30584个样本的实验结果表明,DCLB算法的平均准确率为98.79%,敏感性为94.21%,特异性为98.98%,阳性预测值为93.70%。该模型可以有效提取心电信号特征,适用于监测系统中心律失常疾病的诊断。
关键词
心电信号
类不平衡
深度卷积生成对抗网络
注意力机制
深度学习
Keywords
electrocardiogram(ECG)
classification imbalanced
deep convolutional generative adversarial network(DCGAN)
attention mechanism(AM)
deep learning
分类号
R318 [医药卫生—生物医学工程]
下载PDF
职称材料
题名
基于改进深度残差收缩网络的心电信号分类算法
2
作者
龚玉晓
高淑萍
机构
西安电子科技大学数学与统计学院
出处
《应用数学和力学》
CSCD
北大核心
2023年第8期977-988,共12页
基金
国家自然科学基金项目(91338115)
高等学校学科创新引智计划(111计划)(B08038)。
文摘
心电信号分类是医疗保健领域的重要研究内容.针对大多数方法不能很好地降低样本数量少的类别漏诊率,以及降低预处理操作的复杂性问题,提出了一种基于改进深度残差收缩网络(IDRSN)的心电信号分类算法(即DRSL算法).首先,使用合成少数类过采样技术(SMOTE)扩充数量少的类别样本,从而解决了类不平衡问题;其次,利用改进深度残差收缩网络提取空间特征,其残差模块可以避免网络层加深造成的过拟合,压缩激励和软阈值化子网络可以提取重要局部特征并自动去除噪声;然后,通过长短期记忆网络(LSTM)提取时间特征;最后,利用全连接网络输出分类结果.在MIT-BIH心律失常数据集上的实验结果表明,该算法的分类性能优于IDRSN、DRSN、GAN+2DCNN、CNN+LSTM_ATTENTION、SE-CNN-LSTM分类算法.
关键词
心电信号
合成少数类过采样技术
深度残差收缩网络
压缩激励
长短期记忆网络
Keywords
ECG signal
synthetic minority over-sampling technique
deep residual shrinkage network
squeeze-and-excitation
long short-term memory network
分类号
O29 [理学—应用数学]
TP183 [自动化与计算机技术—控制理论与控制工程]
TN911.7 [电子电信—通信与信息系统]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于位置注意力机制的混合神经网络心电信号分类算法
龚玉晓
高淑萍
《中国生物医学工程学报》
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
2
基于改进深度残差收缩网络的心电信号分类算法
龚玉晓
高淑萍
《应用数学和力学》
CSCD
北大核心
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部