An adaptive criterion for shear yielding as well as shear failure of soils is proposed in this paper to address the fact that most criteria,including the Mohr-Coulomb criterion,the Lade criterion and the Matsuoka-Naka...An adaptive criterion for shear yielding as well as shear failure of soils is proposed in this paper to address the fact that most criteria,including the Mohr-Coulomb criterion,the Lade criterion and the Matsuoka-Nakai criterion,cannot agree well with the experimental results when the value of the intermediate principal stress parameter is too big.The new criterion can adjust an adaptive parameter based on the experimental results in order to make the theoretical calculations fit the test results more accurately.The original elliptic-parabolic yield surface model can capture both soil contraction and dilation behaviors.However,it normally over-predicts the soil strength due to its application of the Extended Mises criterion.A new elliptic-parabolic yield surface mode is presented in this paper,which introduces the adaptive criterion in three-dimensional principal stress space.The new model can well model the stress-strain behavior of soils under general stress conditions.Compared to the original model which can only simulate soil behavior under triaxial compression conditions,the new model can simulate soil behaviors under both triaxial compression conditions and general stress conditions.展开更多
Rockfill material is widely used for construction of high rockfill dam due to its facility,economical cost,high strength and effective aseismatic property.It is provoked profoundly to propose a suitable constitutive m...Rockfill material is widely used for construction of high rockfill dam due to its facility,economical cost,high strength and effective aseismatic property.It is provoked profoundly to propose a suitable constitutive model for a better application of this material.The dilatancy equation of rockfill material plays a significant role in the constitutive model.For the sake of simplicity,a dilatancy equation is established by the linear least square method on the basis of the rearranged data of rockfill material in the true triaxial tests.Based on the fact that the rearranged data at different initial confining pressures are aligned in a narrow band,the dilatancy behavior of rockfill material is independent of the initial confining pressure.However,different from the initial confining pressure,both the intermediate principal stress ratio and the specimen density exhibit a remarkable influence on the dilatancy behaviors of rockfill material.Furthermore,the predictions of the proposed dilatancy equation are in a good agreement with the rearranged test data of rockfill material at different specimen densities and stress paths.展开更多
基金supported by the National Natural Science Foundation for Distinguished Young Scholar(Grant No.50825901)the Public ServiceSector R&D Project of Ministry of Water Resource of China(Grant No.200801014)the Fundamental Research Funds for the Central Universities
文摘An adaptive criterion for shear yielding as well as shear failure of soils is proposed in this paper to address the fact that most criteria,including the Mohr-Coulomb criterion,the Lade criterion and the Matsuoka-Nakai criterion,cannot agree well with the experimental results when the value of the intermediate principal stress parameter is too big.The new criterion can adjust an adaptive parameter based on the experimental results in order to make the theoretical calculations fit the test results more accurately.The original elliptic-parabolic yield surface model can capture both soil contraction and dilation behaviors.However,it normally over-predicts the soil strength due to its application of the Extended Mises criterion.A new elliptic-parabolic yield surface mode is presented in this paper,which introduces the adaptive criterion in three-dimensional principal stress space.The new model can well model the stress-strain behavior of soils under general stress conditions.Compared to the original model which can only simulate soil behavior under triaxial compression conditions,the new model can simulate soil behaviors under both triaxial compression conditions and general stress conditions.
基金supported by the Key Project of National Natural Science Foundation of China and Yalongjiang Hydroelectric Development Joint Research Fund(Grant No.50639050)the National Natural Science Foundation for Distinguished Young Scholar(Grant No.50825901)+1 种基金the Public Service Sector R&D Project of Ministry of Water Resource of China (Grant No.200801014)China Scholarship Fund(Grant No.2010671026)
文摘Rockfill material is widely used for construction of high rockfill dam due to its facility,economical cost,high strength and effective aseismatic property.It is provoked profoundly to propose a suitable constitutive model for a better application of this material.The dilatancy equation of rockfill material plays a significant role in the constitutive model.For the sake of simplicity,a dilatancy equation is established by the linear least square method on the basis of the rearranged data of rockfill material in the true triaxial tests.Based on the fact that the rearranged data at different initial confining pressures are aligned in a narrow band,the dilatancy behavior of rockfill material is independent of the initial confining pressure.However,different from the initial confining pressure,both the intermediate principal stress ratio and the specimen density exhibit a remarkable influence on the dilatancy behaviors of rockfill material.Furthermore,the predictions of the proposed dilatancy equation are in a good agreement with the rearranged test data of rockfill material at different specimen densities and stress paths.