A directed triple system of order v,denoted by DTS(v),is a pair (X,B) where X is a v-set and B is a collection of transitive triples on X such that every ordered pair of X belongs to exactly one triple of B.A DTS(v) (...A directed triple system of order v,denoted by DTS(v),is a pair (X,B) where X is a v-set and B is a collection of transitive triples on X such that every ordered pair of X belongs to exactly one triple of B.A DTS(v) (X,A) is called pure and denoted by PDTS(v) if (a,b,c) ∈ A implies (c,b,a) ∈/ A.An overlarge set of PDTS(v),denoted by OLPDTS(v),is a collection {(Y \{yi},Aij) : yi ∈ Y,j ∈ Z3},where Y is a (v+1)-set,each (Y \{yi},Aij) is a PDTS(v) and these Ais form a partition of all transitive triples on Y .In this paper,we shall discuss the existence problem of OLPDTS(v) and give the following conclusion: there exists an OLPDTS(v) if and only if v ≡ 0,1 (mod 3) and v 】 3.展开更多
基金supported by National Natural Science Foundation of China (Grant No.10971051)Natural Science Foundation of Hebei Province,China (Grant No.A2010000353)
文摘A directed triple system of order v,denoted by DTS(v),is a pair (X,B) where X is a v-set and B is a collection of transitive triples on X such that every ordered pair of X belongs to exactly one triple of B.A DTS(v) (X,A) is called pure and denoted by PDTS(v) if (a,b,c) ∈ A implies (c,b,a) ∈/ A.An overlarge set of PDTS(v),denoted by OLPDTS(v),is a collection {(Y \{yi},Aij) : yi ∈ Y,j ∈ Z3},where Y is a (v+1)-set,each (Y \{yi},Aij) is a PDTS(v) and these Ais form a partition of all transitive triples on Y .In this paper,we shall discuss the existence problem of OLPDTS(v) and give the following conclusion: there exists an OLPDTS(v) if and only if v ≡ 0,1 (mod 3) and v 】 3.