期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Smoothness for the collision local times of bifractional Brownian motions 被引量:12
1
作者 SHEN GuangJun 1,2,& YAN LiTan 3 1 department of mathematics,East china university of Science and Technology,shanghai 200237,china 2 department of mathematics,Anhui Normal university,Wuhu 241000,china 3 department of mathematics,donghua university,shanghai 201620,china 《Science China Mathematics》 SCIE 2011年第9期1859-1873,共15页
Let B^Hi,Ki ={ Bt^Hi,Ki, t ≥ 0}, i= 1, 2 be two independent bifractional Brownian motions with respective indices Hi ∈ (0, 1) and K∈ E (0, 1]. One of the main motivations of this paper is to investigate f0^Tδ... Let B^Hi,Ki ={ Bt^Hi,Ki, t ≥ 0}, i= 1, 2 be two independent bifractional Brownian motions with respective indices Hi ∈ (0, 1) and K∈ E (0, 1]. One of the main motivations of this paper is to investigate f0^Tδ(Bs^H1 ,K1 - the smoothness of the collision local time, introduced by Jiang and Wang in 2009, IT = f0^T δ(Bs^H1,K1)ds, T 〉 0, where 6 denotes the Dirac delta function. By an elementary method, we show that iT is smooth in the sense of the Meyer-Watanabe if and only if min{H-1K1, H2K2} 〈-1/3. 展开更多
关键词 bifractional Brownian motion collision local time intersection local time chaos expansion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部