Let B^Hi,Ki ={ Bt^Hi,Ki, t ≥ 0}, i= 1, 2 be two independent bifractional Brownian motions with respective indices Hi ∈ (0, 1) and K∈ E (0, 1]. One of the main motivations of this paper is to investigate f0^Tδ...Let B^Hi,Ki ={ Bt^Hi,Ki, t ≥ 0}, i= 1, 2 be two independent bifractional Brownian motions with respective indices Hi ∈ (0, 1) and K∈ E (0, 1]. One of the main motivations of this paper is to investigate f0^Tδ(Bs^H1 ,K1 - the smoothness of the collision local time, introduced by Jiang and Wang in 2009, IT = f0^T δ(Bs^H1,K1)ds, T 〉 0, where 6 denotes the Dirac delta function. By an elementary method, we show that iT is smooth in the sense of the Meyer-Watanabe if and only if min{H-1K1, H2K2} 〈-1/3.展开更多
基金supported by National Natural Science Foundation of China (Grant No.10871041)Key Natural Science Foundation of Anhui Educational Committee (Grant No. KJ2011A139)
文摘Let B^Hi,Ki ={ Bt^Hi,Ki, t ≥ 0}, i= 1, 2 be two independent bifractional Brownian motions with respective indices Hi ∈ (0, 1) and K∈ E (0, 1]. One of the main motivations of this paper is to investigate f0^Tδ(Bs^H1 ,K1 - the smoothness of the collision local time, introduced by Jiang and Wang in 2009, IT = f0^T δ(Bs^H1,K1)ds, T 〉 0, where 6 denotes the Dirac delta function. By an elementary method, we show that iT is smooth in the sense of the Meyer-Watanabe if and only if min{H-1K1, H2K2} 〈-1/3.