In the compacting process of the La 0.7Sr 0.3Mn 0.9Fe 0.1O 3 nanosolids under the pressure range of 0.0-4.5 GPa, the apparent pressure-induced crystallite breaking phenomenon in these nanosolids was observed. With inc...In the compacting process of the La 0.7Sr 0.3Mn 0.9Fe 0.1O 3 nanosolids under the pressure range of 0.0-4.5 GPa, the apparent pressure-induced crystallite breaking phenomenon in these nanosolids was observed. With increasing pressure up to 4.5 GPa, the average grain size decreases by 46% while the magnetization of nanosolids decrease by 40% and their coercive increases by 35%. This kind of breaking has a close relation to the existence of oxygen deficiency in La 0.7Sr 0.3Mn 0.9Fe 0.1O 3 nanoparticles. A simple and convenient method for preparing the bulk nanosolids with a large number of clean interfaces has been suggested.展开更多
文摘In the compacting process of the La 0.7Sr 0.3Mn 0.9Fe 0.1O 3 nanosolids under the pressure range of 0.0-4.5 GPa, the apparent pressure-induced crystallite breaking phenomenon in these nanosolids was observed. With increasing pressure up to 4.5 GPa, the average grain size decreases by 46% while the magnetization of nanosolids decrease by 40% and their coercive increases by 35%. This kind of breaking has a close relation to the existence of oxygen deficiency in La 0.7Sr 0.3Mn 0.9Fe 0.1O 3 nanoparticles. A simple and convenient method for preparing the bulk nanosolids with a large number of clean interfaces has been suggested.