We investigate the structural and electrical properties of carbon-ion-implanted ultrananocrystalline diamond(UNCD)films. Impedance spectroscopy measurements show that the impedance of diamond grains is relatively st...We investigate the structural and electrical properties of carbon-ion-implanted ultrananocrystalline diamond(UNCD)films. Impedance spectroscopy measurements show that the impedance of diamond grains is relatively stable, while that of grain boundaries(GBs)(Rb) significantly increases after the C~+ implantation, and decreases with the increase in the annealing temperature(Ta) from 650℃ to 1000℃. This implies that the C~+ implantation has a more significant impact on the conductivity of GBs. Conductive atomic force microscopy demonstrates that the number of conductive sites increases in GB regions at Ta above 900℃, owing to the formation of a nanographitic phase confirmed by high-resolution transmission electronic microscopy. Visible-light Raman spectra show that resistive trans-polyacetylene oligomers desorb from GBs at Ta above 900℃, which leads to lower Rb of samples annealed at 900 and 1000℃. With the increase in Ta to 1000℃, diamond grains become smaller with longer GBs modified by a more ordered nanographitic phase, supplying more conductive sites and leading to a lower Rb.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.50972129 and 50602039)the International Science Technology Cooperation Program of China(Grant No.2014DFR51160)+3 种基金the National Key Research and Development Program of China(Grant No.2016YFE0133200)European Union’s Horizon 2020 Research and Innovation Staff Exchange(RISE)Scheme(Grant No.734578)One Belt and One Road International Cooperation Project from the Key Research and Development Program of Zhejiang Province,China(Grant No.2018C04021)Xinmiao Talents Program of Zhejiang Province,China(Grant No.2017R403078)
文摘We investigate the structural and electrical properties of carbon-ion-implanted ultrananocrystalline diamond(UNCD)films. Impedance spectroscopy measurements show that the impedance of diamond grains is relatively stable, while that of grain boundaries(GBs)(Rb) significantly increases after the C~+ implantation, and decreases with the increase in the annealing temperature(Ta) from 650℃ to 1000℃. This implies that the C~+ implantation has a more significant impact on the conductivity of GBs. Conductive atomic force microscopy demonstrates that the number of conductive sites increases in GB regions at Ta above 900℃, owing to the formation of a nanographitic phase confirmed by high-resolution transmission electronic microscopy. Visible-light Raman spectra show that resistive trans-polyacetylene oligomers desorb from GBs at Ta above 900℃, which leads to lower Rb of samples annealed at 900 and 1000℃. With the increase in Ta to 1000℃, diamond grains become smaller with longer GBs modified by a more ordered nanographitic phase, supplying more conductive sites and leading to a lower Rb.