Electron transport system (ETS ) / dehydrogenase activity in a paddy field soil was measured under a variety of incubation conditions using the reduction of 2- (p-iodophenyl- 3- (p-nitrophenyl ) -5- phellyl tetrazoliu...Electron transport system (ETS ) / dehydrogenase activity in a paddy field soil was measured under a variety of incubation conditions using the reduction of 2- (p-iodophenyl- 3- (p-nitrophenyl ) -5- phellyl tetrazolium chloride (INT) to iodonitrotetrazolium formazan (INTF). The results exhibited a high positive correlation between the ETS activity and the incubation temperature and soil moisture. Dehydrogenase/ETS activity displayed a negative correlation with insecticide concentrations, and the activity affected adversely as the concentration of the insecticide increased. The higher doses, 5 and 10 field rates (1 field rate ~ 1500 mL ha-1), of insecticide significantly inhibited ETS activity, while lower rates failed to produce any significant reducing effect. Inorganic N (as urea) of concentrations from 0 to 100 ug N g-1 soil showed a positive response to ETS activity. However, at concentrations of 200 and 400 ug N g-1, the activity was reduced significantly.展开更多
基金Project supported by the International Rice Research Institute (IRRI) under project of Reversing Trendsof Declining Productiv
文摘Electron transport system (ETS ) / dehydrogenase activity in a paddy field soil was measured under a variety of incubation conditions using the reduction of 2- (p-iodophenyl- 3- (p-nitrophenyl ) -5- phellyl tetrazolium chloride (INT) to iodonitrotetrazolium formazan (INTF). The results exhibited a high positive correlation between the ETS activity and the incubation temperature and soil moisture. Dehydrogenase/ETS activity displayed a negative correlation with insecticide concentrations, and the activity affected adversely as the concentration of the insecticide increased. The higher doses, 5 and 10 field rates (1 field rate ~ 1500 mL ha-1), of insecticide significantly inhibited ETS activity, while lower rates failed to produce any significant reducing effect. Inorganic N (as urea) of concentrations from 0 to 100 ug N g-1 soil showed a positive response to ETS activity. However, at concentrations of 200 and 400 ug N g-1, the activity was reduced significantly.