A friction damper device (FDD) is used for vibration control of an existing steel jacket platform under seismic excitation. First, the damping is presented for vibration mitigation of structures located in seismically...A friction damper device (FDD) is used for vibration control of an existing steel jacket platform under seismic excitation. First, the damping is presented for vibration mitigation of structures located in seismically active zones. A new method for quick design of friction or yielding damping devices is presented. The effectiveness of the damping system employing such FDDs in a jacket platform is evaluated numerically. The influence of key parameters of the damping system on the vibration suppression of the offshore structure is studied in detail. To examine the vibration control effectiveness of the FDD for the jacket platform, performance of the controlled structure under the seismic forces is studied using numerical simulations. A parametric study is undertaken to discover the optimized slip load and brace area of the FDD. It is shown that the FDD is effective in mitigating the dynamic responses of the offshore platform structure.展开更多
文摘A friction damper device (FDD) is used for vibration control of an existing steel jacket platform under seismic excitation. First, the damping is presented for vibration mitigation of structures located in seismically active zones. A new method for quick design of friction or yielding damping devices is presented. The effectiveness of the damping system employing such FDDs in a jacket platform is evaluated numerically. The influence of key parameters of the damping system on the vibration suppression of the offshore structure is studied in detail. To examine the vibration control effectiveness of the FDD for the jacket platform, performance of the controlled structure under the seismic forces is studied using numerical simulations. A parametric study is undertaken to discover the optimized slip load and brace area of the FDD. It is shown that the FDD is effective in mitigating the dynamic responses of the offshore platform structure.