In this paper, a fractional-order model which describes the human immunodeficiency type-1 virus (HIV-1) infection is presented. Numerical solutions are obtained using a generalized Euler method (GEM) to handle the...In this paper, a fractional-order model which describes the human immunodeficiency type-1 virus (HIV-1) infection is presented. Numerical solutions are obtained using a generalized Euler method (GEM) to handle the fractional derivatives. The fractional derivatives are described in the Caputo sense. We show that the model established in this paper possesses non-negative solutions. Comparisons between the results of the fractional-order model, the results of the integer model and the measured real data obtained from 10 patients during primary HIV-1 infection are presented. These compar- isons show that the results of the fractional-order model give predictions to the plasma virus load of the patients better than those of the integer model.展开更多
文摘In this paper, a fractional-order model which describes the human immunodeficiency type-1 virus (HIV-1) infection is presented. Numerical solutions are obtained using a generalized Euler method (GEM) to handle the fractional derivatives. The fractional derivatives are described in the Caputo sense. We show that the model established in this paper possesses non-negative solutions. Comparisons between the results of the fractional-order model, the results of the integer model and the measured real data obtained from 10 patients during primary HIV-1 infection are presented. These compar- isons show that the results of the fractional-order model give predictions to the plasma virus load of the patients better than those of the integer model.