The cyclic multilayer alloy (CMA) coatings of Zn-Co have been developed galvanostatically on mild steel (MS), using single bath technique. Depositions were carried out using square current pulses. Corrosion behaviors ...The cyclic multilayer alloy (CMA) coatings of Zn-Co have been developed galvanostatically on mild steel (MS), using single bath technique. Depositions were carried out using square current pulses. Corrosion behaviors of the coatings were evaluated by potentiodynamic polarization and electrochemical impedance method, supported by dielectric spectroscopy. The cyclic cathode current densities (CCCD’s) and number of layers were optimized for highest corrosion stability of the coatings. The CMA coating developed at 3.0/5.0 A/dm2, having 300 layers, represented as (Zn-Co) 3.0/5.0/300 was found to exhibit ~ 40 times better corrosion resistance compared to monolayer coating, developed from same bath for same time. Substantial improvement in the corrosion resistance of CMA coatings is attributed to layered coating, having alternatively different phase structures, evidenced by XRD study. The formation of multilayer and corrosion mechanism was analyzed using Scanning Electron Microscopy.展开更多
文摘The cyclic multilayer alloy (CMA) coatings of Zn-Co have been developed galvanostatically on mild steel (MS), using single bath technique. Depositions were carried out using square current pulses. Corrosion behaviors of the coatings were evaluated by potentiodynamic polarization and electrochemical impedance method, supported by dielectric spectroscopy. The cyclic cathode current densities (CCCD’s) and number of layers were optimized for highest corrosion stability of the coatings. The CMA coating developed at 3.0/5.0 A/dm2, having 300 layers, represented as (Zn-Co) 3.0/5.0/300 was found to exhibit ~ 40 times better corrosion resistance compared to monolayer coating, developed from same bath for same time. Substantial improvement in the corrosion resistance of CMA coatings is attributed to layered coating, having alternatively different phase structures, evidenced by XRD study. The formation of multilayer and corrosion mechanism was analyzed using Scanning Electron Microscopy.