期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
ECG beat classification using particle swarm optimization and support vector machine 被引量:1
1
作者 ali KHaZaee a. e. zadeh 《Frontiers of Computer Science》 SCIE EI CSCD 2014年第2期217-231,共15页
In this paper, we propose a novel ECG arrhythmia classification method using power spectral-based features and support vector machine (SVM) classifier. The method extracts electrocardiogram's spectral and three tim... In this paper, we propose a novel ECG arrhythmia classification method using power spectral-based features and support vector machine (SVM) classifier. The method extracts electrocardiogram's spectral and three timing inter- val features. Non-parametric power spectral density (PSD) estimation methods are used to extract spectral features. The proposed approach optimizes the relevant parameters of SVM classifier through an intelligent algorithm using parti- cle swarm optimization (PSO). These parameters are: Gaus- sian radial basis function (GRBF) kernel parameter o- and C penalty parameter of SVM classifier. ECG records from the MIT-BIH arrhythmia database are selected as test data. It is observed that the proposed power spectral-based hybrid par- ticle swarm optimization-support vector machine (SVMPSO) classification method offers significantly improved perfor- mance over the SVM which has constant and manually ex- tracted parameter. 展开更多
关键词 ECG arrhythmia classification SVM PSO op-timization PSD
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部