We analyse the influence of Brownian motion and thermophoresis on a nonlinearly permeable stretching sheet in a nanofluid. The governing partial differential equations are reduced into a system of ordinary differentia...We analyse the influence of Brownian motion and thermophoresis on a nonlinearly permeable stretching sheet in a nanofluid. The governing partial differential equations are reduced into a system of ordinary differential equations using similarity transformation and then solved numerically using the Runge-Kutta with shooting technique. Effects of Brownian motion and thermophoresis on the flow, concentration, temperature, and mass transfer and heat transfer characteristics are investigated. The local Nusselt number and the local Sherwood numbers are presented and compared with existing results and are found to be in good agreement.展开更多
文摘We analyse the influence of Brownian motion and thermophoresis on a nonlinearly permeable stretching sheet in a nanofluid. The governing partial differential equations are reduced into a system of ordinary differential equations using similarity transformation and then solved numerically using the Runge-Kutta with shooting technique. Effects of Brownian motion and thermophoresis on the flow, concentration, temperature, and mass transfer and heat transfer characteristics are investigated. The local Nusselt number and the local Sherwood numbers are presented and compared with existing results and are found to be in good agreement.