This contribution describes the use of chromatic techniques for quantifying signatures of partial discharges(PD).A brief description of the basis of chromatic monitoring is given along with explanations of how the app...This contribution describes the use of chromatic techniques for quantifying signatures of partial discharges(PD).A brief description of the basis of chromatic monitoring is given along with explanations of how the approach may be applied for addressing signals produced by PDs.Laboratory test data from several sources for different types of PDs,operating conditions and geometries have been subjected to the chromatic procedures.These include a point-plane gap,a sphere in a liquid and treeing in a cable.Chromatic changes in PD signals have been investigated as a function of the amplitude of the alternating voltage producing the PD,the time duration before full electrical breakdown and for different forms of PDs.Results of the chromatic processing of these data are presented in the form of a number of chromatic maps relating to different quarter cycles of the alternating voltage producing the PDs.The results show the potential of the chromatic techniques for indicating the likelihood of full electrical breakdown and for distinguishing between certain forms of PDs.A summary of the chromatic processing procedures is presented for producing chromatic maps and for adaptation in further exploring PD signal features.展开更多
文摘This contribution describes the use of chromatic techniques for quantifying signatures of partial discharges(PD).A brief description of the basis of chromatic monitoring is given along with explanations of how the approach may be applied for addressing signals produced by PDs.Laboratory test data from several sources for different types of PDs,operating conditions and geometries have been subjected to the chromatic procedures.These include a point-plane gap,a sphere in a liquid and treeing in a cable.Chromatic changes in PD signals have been investigated as a function of the amplitude of the alternating voltage producing the PD,the time duration before full electrical breakdown and for different forms of PDs.Results of the chromatic processing of these data are presented in the form of a number of chromatic maps relating to different quarter cycles of the alternating voltage producing the PDs.The results show the potential of the chromatic techniques for indicating the likelihood of full electrical breakdown and for distinguishing between certain forms of PDs.A summary of the chromatic processing procedures is presented for producing chromatic maps and for adaptation in further exploring PD signal features.