<span style="font-family:Verdana;">Glycine crystallizes into three different polymorphs called </span><i><span style="font-family:Verdana;">α</span></i><span...<span style="font-family:Verdana;">Glycine crystallizes into three different polymorphs called </span><i><span style="font-family:Verdana;">α</span></i><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">β</span></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;">γ</span></i><span style="font-family:Verdana;"> under standard physicochemical conditions. They have different features depending on their structural variations. The possible interaction of glycine with magnetic minerals in meteorites and comets or in the ancient Earth, paves the way to study the self-assembly and molecular behavior under irradiation and magnetic conditions. The magnetic field might induce the formation of a specific polymorph of glycine. To gain insight on the consequences of gamma irradiation with a gradient of static magnetic fields (0.06 T, 0.3 T, 0.42 T and 0.6 T) on the self-assembly of single macroscopic glycine crystals, we gamma irradiated the powdered amino acid and then assembled single crystals from water solutions. The preliminary results showed a stable formation of fluid </span><span style="font-family:Verdana;">inclusions in the single crystals and no straightforward effect on the</span><span style="font-family:Verdana;"> self-assem</span><span style="font-family:Verdana;">- </span><span style="font-family:;" "=""><span style="font-family:Verdana;">bly process after glycine gamma irradiation and interaction with static magnetic fields. The </span><i><span style="font-family:Verdana;">α</span></i><span style="font-family:Verdana;"> glycine polymorph single crystals formed at 55<span style="white-space:nowrap;">°</span> from the magnetic longitudinal axis and seemed to be enhanced by gamma radiation. </span><span><span style="font-family:Verdana;">The </span><i><span style="font-family:Verdana;">γ</span></i><span style="font-family:Verdana;">-glycine single crystals presented L and D circular dichroism signals,</span></span><span style="font-family:Verdana;"> whereas the irradiated samples presented no circular dichroism bands. Com</span></span><span style="font-family:Verdana;">- </span><span style="font-family:;" "=""><span style="font-family:Verdana;">puter simulations suggest different catalytic properties from </span><i><span style="font-family:Verdana;">α</span></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;">γ</span></i><span style="font-family:Verdana;"> glycine crystals.</span></span>展开更多
文摘<span style="font-family:Verdana;">Glycine crystallizes into three different polymorphs called </span><i><span style="font-family:Verdana;">α</span></i><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">β</span></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;">γ</span></i><span style="font-family:Verdana;"> under standard physicochemical conditions. They have different features depending on their structural variations. The possible interaction of glycine with magnetic minerals in meteorites and comets or in the ancient Earth, paves the way to study the self-assembly and molecular behavior under irradiation and magnetic conditions. The magnetic field might induce the formation of a specific polymorph of glycine. To gain insight on the consequences of gamma irradiation with a gradient of static magnetic fields (0.06 T, 0.3 T, 0.42 T and 0.6 T) on the self-assembly of single macroscopic glycine crystals, we gamma irradiated the powdered amino acid and then assembled single crystals from water solutions. The preliminary results showed a stable formation of fluid </span><span style="font-family:Verdana;">inclusions in the single crystals and no straightforward effect on the</span><span style="font-family:Verdana;"> self-assem</span><span style="font-family:Verdana;">- </span><span style="font-family:;" "=""><span style="font-family:Verdana;">bly process after glycine gamma irradiation and interaction with static magnetic fields. The </span><i><span style="font-family:Verdana;">α</span></i><span style="font-family:Verdana;"> glycine polymorph single crystals formed at 55<span style="white-space:nowrap;">°</span> from the magnetic longitudinal axis and seemed to be enhanced by gamma radiation. </span><span><span style="font-family:Verdana;">The </span><i><span style="font-family:Verdana;">γ</span></i><span style="font-family:Verdana;">-glycine single crystals presented L and D circular dichroism signals,</span></span><span style="font-family:Verdana;"> whereas the irradiated samples presented no circular dichroism bands. Com</span></span><span style="font-family:Verdana;">- </span><span style="font-family:;" "=""><span style="font-family:Verdana;">puter simulations suggest different catalytic properties from </span><i><span style="font-family:Verdana;">α</span></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;">γ</span></i><span style="font-family:Verdana;"> glycine crystals.</span></span>