This paper is concerned with the application of a Physics of Failure (PoF) methodology to assessing the reliability of Micro-Electro-Mechanical-System (MEMS) switches. Numerical simulations, based on the finite elemen...This paper is concerned with the application of a Physics of Failure (PoF) methodology to assessing the reliability of Micro-Electro-Mechanical-System (MEMS) switches. Numerical simulations, based on the finite element method (FEM) using a sub-domain approach, were performed to examine the damage onset (e.g. yielding) due to temperature variations and to simulated the crack propagation different kind of loading conditions and, in particular, thermal fatigue. In this work remeshing techniques were employed in order to understand the evolution of initial flaws due, for instance, to manufacturing processes or originated after thermal fatigue.展开更多
文摘This paper is concerned with the application of a Physics of Failure (PoF) methodology to assessing the reliability of Micro-Electro-Mechanical-System (MEMS) switches. Numerical simulations, based on the finite element method (FEM) using a sub-domain approach, were performed to examine the damage onset (e.g. yielding) due to temperature variations and to simulated the crack propagation different kind of loading conditions and, in particular, thermal fatigue. In this work remeshing techniques were employed in order to understand the evolution of initial flaws due, for instance, to manufacturing processes or originated after thermal fatigue.