Bagjata area is a part of Singhbhum Shear Zone (SSZ) falling within Survey of India Toposheets No. 73J/6, J/7, J/10 and J/11. The Subarnarekha River, Sankh Nala and Gohala faults are major disconti-nuities in the area...Bagjata area is a part of Singhbhum Shear Zone (SSZ) falling within Survey of India Toposheets No. 73J/6, J/7, J/10 and J/11. The Subarnarekha River, Sankh Nala and Gohala faults are major disconti-nuities in the area. An attempt has been made to simulate the regional groundwater hydrodynamics. Few dug-wells were monitored for more than a year to find out the seasonal fluctuation changes in the drainage pattern and groundwater level. Groundwater samples were analyzed for physical and chemical analysis. Results show that one of the major discontinuities in the area-the Gohala Fault controls largely the geohydrodynamics of the area. Discharge of groundwater is of effluence type during all the three seasons. The water is safe for drinking as most of the contaminations are much below the permissible limits. No such previous work has been attempted in this area to investigate the groundwater dynamics and hence the selection of few parameters were assumed and taken from similar surrounding aquifer systems for modeling. The groundwater flow was also assumed to be in steady state. The present paper deals with some important aspects related to the hydrological significance of the Bagjata Uranium mining area and its relationship with the local climate, physiography and meteorology. An attempt is also made to simulate the status of groundwater conditions of hard rock aquifers in the region. Further it envisages the necessity of such study being undertaken in the entire SSZ belt to secure precise information about the surface manifestations which govern the groundwater recharge potentiality as well as its quality.展开更多
文摘Bagjata area is a part of Singhbhum Shear Zone (SSZ) falling within Survey of India Toposheets No. 73J/6, J/7, J/10 and J/11. The Subarnarekha River, Sankh Nala and Gohala faults are major disconti-nuities in the area. An attempt has been made to simulate the regional groundwater hydrodynamics. Few dug-wells were monitored for more than a year to find out the seasonal fluctuation changes in the drainage pattern and groundwater level. Groundwater samples were analyzed for physical and chemical analysis. Results show that one of the major discontinuities in the area-the Gohala Fault controls largely the geohydrodynamics of the area. Discharge of groundwater is of effluence type during all the three seasons. The water is safe for drinking as most of the contaminations are much below the permissible limits. No such previous work has been attempted in this area to investigate the groundwater dynamics and hence the selection of few parameters were assumed and taken from similar surrounding aquifer systems for modeling. The groundwater flow was also assumed to be in steady state. The present paper deals with some important aspects related to the hydrological significance of the Bagjata Uranium mining area and its relationship with the local climate, physiography and meteorology. An attempt is also made to simulate the status of groundwater conditions of hard rock aquifers in the region. Further it envisages the necessity of such study being undertaken in the entire SSZ belt to secure precise information about the surface manifestations which govern the groundwater recharge potentiality as well as its quality.