Let G = (V, E) be a simple graph. A set S E(G) is an edge-vertex dominating set of G (or simply an ev-dominating set), if for all vertices v V(G);there exists an edge eS such that e dominates v. Let denote the family ...Let G = (V, E) be a simple graph. A set S E(G) is an edge-vertex dominating set of G (or simply an ev-dominating set), if for all vertices v V(G);there exists an edge eS such that e dominates v. Let denote the family of all ev-dominating sets of with cardinality i. Let . In this paper, we obtain a recursive formula for . Using this recursive formula, we construct the polynomial, , which we call edge-vertex domination polynomial of (or simply an ev-domination polynomial of ) and obtain some properties of this polynomial.展开更多
Let G = (V, E) be a simple graph. A set S í V is a dominating set of G, if every vertex in V-S is adjacent to at least one vertex in S. Let be the square of the Path and let denote the family of all dominating se...Let G = (V, E) be a simple graph. A set S í V is a dominating set of G, if every vertex in V-S is adjacent to at least one vertex in S. Let be the square of the Path and let denote the family of all dominating sets of with cardinality i. Let . In this paper, we obtain a recursive formula for . Using this recursive formula, we construct the polynomial, , which we call domination polynomial of and obtain some properties of this polynomial.展开更多
文摘Let G = (V, E) be a simple graph. A set S E(G) is an edge-vertex dominating set of G (or simply an ev-dominating set), if for all vertices v V(G);there exists an edge eS such that e dominates v. Let denote the family of all ev-dominating sets of with cardinality i. Let . In this paper, we obtain a recursive formula for . Using this recursive formula, we construct the polynomial, , which we call edge-vertex domination polynomial of (or simply an ev-domination polynomial of ) and obtain some properties of this polynomial.
文摘Let G = (V, E) be a simple graph. A set S í V is a dominating set of G, if every vertex in V-S is adjacent to at least one vertex in S. Let be the square of the Path and let denote the family of all dominating sets of with cardinality i. Let . In this paper, we obtain a recursive formula for . Using this recursive formula, we construct the polynomial, , which we call domination polynomial of and obtain some properties of this polynomial.