期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Novel heating-and deformation-induced phase transitions and mechanical properties for multicomponent Zr_(50)M_(50),Zr_(50)(M,Ag)_(50)and Zr_(50)(M,Pd)_(50)(M=Fe,Co,Ni,Cu)amorphous alloys 被引量:1
1
作者 J.Ding A.Inoue +5 位作者 F.L.Kong S.L.Zhu Y.L.Pu E.Shalaan a.a.al-ghamdi A.L.Greer 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第9期109-118,共10页
Multicomponent alloys of Zr_(50)M_(50),Zr_(50)(M,Ag)_(50)and Zr_(50)(M,Pd)_(50)(M=Fe,Co,Ni,Cu)can be melt-spun to obtain amorphous ribbons.The maximum thickness for fully amorphous ribbons varies with composition in t... Multicomponent alloys of Zr_(50)M_(50),Zr_(50)(M,Ag)_(50)and Zr_(50)(M,Pd)_(50)(M=Fe,Co,Ni,Cu)can be melt-spun to obtain amorphous ribbons.The maximum thickness for fully amorphous ribbons varies with composition in the range 34-53μm.In contrast,fully amorphous ribbons are not obtainable for binary Zr_(50)Ni_(50)or ternary Zr_(50)(Ni,Cu)_(50)alloys.Heating-induced crystallization occurs through:two stages of amorphous[am]→[~(am')+B2]→[B2+B33]for Zr_(50)M_(50);and[am]→[am'+B2]→[B2+AgZr]for Zr_(50)(M,Ag)_(50);and a single stage of[am]→[B2]for Zr_(50)(M,Pd)_(50),while no B2 phase is formed for the binary and ternary Zr_(50)Q_(50)(Q=Ni or/and Cu)alloys.As-spun amorphous ribbons have good bending plasticity.Remarkably,Zr_(50)M_(50)ribbons in tension show 0.22-0.28%plastic elongation and work-hardening(the yield stress is~820 MPa,the fracture stress is~1200 MPa).When cold-rolled at room temperature to 30%reduction in thickness,Zr_(50)M_(50)ribbons show 10%increase in hardness,while retaining good bending plasticity.Cold-rolling induces precipitation of spheroidal B2 and irregular B33 particles,while deformation in tension induces B2,B33 and also plate-like monoclinic precipitates.The B2 and B33 particles form by polymorphic transformation,and include a high density of internal defects.This novel deformationinduced precipitation has not been recognized for any Zr_(50)Q_(50)binary or ternary alloys.The new multicomponent systems are encouraging for future progress as structural amorphous alloys. 展开更多
关键词 MULTICOMPONENT Microstructure Mechanical properties Phase transition Amorphous alloy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部