期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Corrosion Behaviours of Copper Alloy in Solutions Containing Na_2SO_4 and NaCl with Different Concentrations 被引量:6
1
作者 a.a.el-meligi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第6期549-551,共3页
Potentiodynamic polarisation, potential-time measurements, X-ray diffraction (XRD) and infrared spectroscopy (IR) have been used to investigate the effect of different concentrations of Na2SO4 in the absence and prese... Potentiodynamic polarisation, potential-time measurements, X-ray diffraction (XRD) and infrared spectroscopy (IR) have been used to investigate the effect of different concentrations of Na2SO4 in the absence and presence of NaCI, on the corrosion of Cu-alloy. The electrochemical measurements showed that the increase of Na2SO4 concentration led to increase the corrosion current density of Cu alloy and vice versa. The presence of NaCI shifted the potential to more cathodic potential, which had a great influence on the protectiveness of the Cu oxide layer formed on the surface in presence of Na2SO4. The spectrometric measurements indicated the constituents of the film formed on the alloy surface were mainly Cu2O, in addition to the oxides, NiO and Fe2O3, which were traced by XRD analysis. 展开更多
关键词 Cu-alloy Polarisation X-ray diffraction NA2SO4 NACL Oxide film
下载PDF
Intercalation and Stability of Layered Semiconductive Material in Corrosive Environment 被引量:1
2
作者 a.a.el-meligi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第2期252-256,共5页
The intercalation of 4-methyl pyridine (4-picoline) into layered semiconductive material (MnPS3) and the stability of the resulting materials in corrosive environments (water, HCI and open atmosphere) were inves... The intercalation of 4-methyl pyridine (4-picoline) into layered semiconductive material (MnPS3) and the stability of the resulting materials in corrosive environments (water, HCI and open atmosphere) were investigated. Powder X-ray diffraction (XRD) indicated that the presence of water and hydrochloric acid greatly influenced the existing form of intercalation and its orientation in the interlayer of the host. Atmospheric environment (open air) affected the guest orientation in the interlayer of the host material. Phase transformation occurred and the material was stable. The intercalated compounds could be indexed in the trigonal unit cell. The XRD patterns exhibited sharp hkl reflections of the intercalated compounds, which formed in water and HCI, confirming that the materials were well crystalline and stable in corrosive environments. 展开更多
关键词 MnPS3 INTERCALATION STABILITY XRD Corrosive environments
下载PDF
Effect of Heating Rates on the Formable Oxide Scale on a C-Steel Surface 被引量:1
3
作者 a.a.el-meligi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第5期591-594,共4页
Oxide scale formation on a C-steel surface has been investigated using linear heating rates ranging from 0.1℃/min to 10℃/min at high temperatures. The studies on the oxide scale formation at high temperature (650℃)... Oxide scale formation on a C-steel surface has been investigated using linear heating rates ranging from 0.1℃/min to 10℃/min at high temperatures. The studies on the oxide scale formation at high temperature (650℃) at slower heating rate (0.1℃/min) shows that the kinetic regime is linear. X-ray diffraction measurements revealed that the scale constituents are significantly influenced by the heating rate. The adherence of the scale was improved by using slower heating rate (0.1℃/min-≤650℃), while above such degree the scale was susceptible to cracking and flaking out of the alloy surface. In fact, the development of oxide growth stresses can cause considerable scale cracking. As well, variation of the crystallite sizes under the aforementioned conditions might affect the scale stacking to the alloy surface. The secondary electron detector images of the oxide scale shows that the scale was imperfectly smooth and there were a number of voids and defects in the scale skin, especially at fast heating rate. This observation could be attributed to defects of the as-received alloy. In general, slower heating rate reduced the defects of the scale and improved its adherence. 展开更多
关键词 C-steel Oxide scale Heating rate Weight gain XRD
下载PDF
Corrosion Penetration and Crystal Structure of AA5022 in HCl Solution and Rare Earth Elements
4
作者 a.a.el-meligi S.H.Sanad +1 位作者 A.A.Ismail A.M.Barakat 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第3期324-330,共7页
Al-alloy (AA5022) corrosion penetration (CP) and crystal structure were investigated after running static immersion corrosion tests in 1 mol/L HCl solution and different concentrations of rare earth elements (La3+), (... Al-alloy (AA5022) corrosion penetration (CP) and crystal structure were investigated after running static immersion corrosion tests in 1 mol/L HCl solution and different concentrations of rare earth elements (La3+), (Ce3+) and their combination, at different temperatures. X-ray diffraction (XRD) was used to examine the surface structure before and after immersion, and secondary electron detector (SED) was operated to study surface morphology. In 1 mol/L HCI solution the corrosion penetration increased with increasing temperature and immersion time. The increase of La3+ concentrations up to 1000×10-6 g/L led to the decrease in the corrosion penetration, and the decrease in Ce3+ concentrations up to 50×10-6 g/L decreases the corrosion penetration of the alloy. Mix3 (combination of La3+ and Ce3+) dramatically reduced the corrosion penetration. This suggests that a synergistic effect exists between La3+ and Ce3+. The reaction kinetics both in absence and presence of La3+ and Ce3+ and their combination would follow a parabolic rate law. The XRD patterns revealed that the intensities of certain hkl phases are affected. The crystalline structure has not been deformed either before or after testing and there are no additional peaks except that of the as-received alloy. In the case of accelerating CP, the surface morphology shows that the roughness and voids of surface are increased. 展开更多
关键词 Al-alloy Corrosion penetration Crystal structure XRD
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部