In the long term,coal will remain a competitive resource in the thermal power sector,primarily due to its abundant global reserves and low costs.Despite numerous factors,including signifi cant environmental concerns,t...In the long term,coal will remain a competitive resource in the thermal power sector,primarily due to its abundant global reserves and low costs.Despite numerous factors,including signifi cant environmental concerns,the global share of coal power generation has remained at 40%over the past four decades.Effi cient and clean coal combustion is a high priority wherever coal is used as a fuel.An improved low-power boiler design has been proposed to enhance effi ciency during fi xedbed coal combustion.This design reduces harmful emissions into the atmosphere by optimizing parameters and operating modes.In this study,mathematical modeling of gas velocity and temperature distribution during fi xed-bed coal combustion was conducted for a conventional grate system and an improved grate-free system.Experimental methods were employed to develop descriptive airfl ow models in the fi xed coal layer,considering nozzle diameter and air supply pressure in the furnace chamber without a grate system.Comparative evaluations of fi xed-bed coal combustion rates were performed using an experimental laboratory setup with both grate and grate-free stove systems.展开更多
基金The Committee of Science of the Ministry of Science and Higher Education of the Republic of Kazakhstan(No.AP19679995)have funded this research.
文摘In the long term,coal will remain a competitive resource in the thermal power sector,primarily due to its abundant global reserves and low costs.Despite numerous factors,including signifi cant environmental concerns,the global share of coal power generation has remained at 40%over the past four decades.Effi cient and clean coal combustion is a high priority wherever coal is used as a fuel.An improved low-power boiler design has been proposed to enhance effi ciency during fi xedbed coal combustion.This design reduces harmful emissions into the atmosphere by optimizing parameters and operating modes.In this study,mathematical modeling of gas velocity and temperature distribution during fi xed-bed coal combustion was conducted for a conventional grate system and an improved grate-free system.Experimental methods were employed to develop descriptive airfl ow models in the fi xed coal layer,considering nozzle diameter and air supply pressure in the furnace chamber without a grate system.Comparative evaluations of fi xed-bed coal combustion rates were performed using an experimental laboratory setup with both grate and grate-free stove systems.