Production of Cu-Cr/carbon nanotube (CNT) hybrid nano-composite by wet and dry milling processes at three different levels of milling energy was investigated in order to study the effect of milling energy in two dif...Production of Cu-Cr/carbon nanotube (CNT) hybrid nano-composite by wet and dry milling processes at three different levels of milling energy was investigated in order to study the effect of milling energy in two different media on dispersion of CNTs, and preparation of the nano-composite. The structural evolution and solid solution formation were evaluated by X-ray diffraction technique. The microstructure was characterized by scanning electron microscopy and transmission electron microscopy. Also, the mechanical properties were measured by microhardness test. The mean crystallite size was in the range of 20-63 nm depending on milling medium and energy. CNTs dispersion is a function of milling energy. According to FESEM images and microhardness results, it can be concluded that wet milling is more applicable in dispersing CNTs homogeneously in comparison to dry milling. It was also found that wet milling at higher milling energies can be a beneficial method of producing the homogeneous hybrid nano-composite with the least damages introducing on CNTs because of the higher microhardness which can be attributed to better dispersion of less damaged CNTs. Compared with crystallite size changes, CNTs dispersion and damages were considerably more effective on hardness.展开更多
Porous bismuth ferrite ceramics were synthesized by sacrificial pore former method. A mixture of BiFeO3 and 20 wt% of various pore formers including high density polyethylene, polyethylene glycol, polyvinyl alcohol, u...Porous bismuth ferrite ceramics were synthesized by sacrificial pore former method. A mixture of BiFeO3 and 20 wt% of various pore formers including high density polyethylene, polyethylene glycol, polyvinyl alcohol, urea and graphite was intensively milled for 10 h in a planetary ball mill, uniaxially cold pressed and then subjected to the multi-stage heat treatment. The results revealed that urea and polyvinyl alcohol are appropriate candidates for maintaining the strength of the final porous structure. Density and porosity measurements showed that by employing 20 wt% of high density polyethylene and graphite, a porous sample with a maximum porosity of nearly 40% could be obtained. Mercury porosimetry results showed that using urea as a pore former gives porous bismuth ferrite with a mean pore diameter of 7μm, uniform pore distribution as well as interconnected pores. Moreover, reactions between BiFeO3 matrix phase and thermal decomposition products of pore formers can lead to degradation of the BiFeO3 phase in the final porous samples. Analysis of X-ray diffraction patterns illustrated that in the samples pro- cessed with graphite, high density polyethylene and polyvinyl alcohol as pore former, BiFeO3 matrix phase partially or completely decomposed to intermediate phases of Bi2Fe4O9 and Bi25FeO40. Using of urea did not damage the matrix phase and porous BiFeO3 within the original perovskite structure could be prepared. Furthermore, thermodynamic investigation was carried out for prediction of possible in- teractions between matrix phase and pore former at elevated temperatures.展开更多
基金The financial supports of this study by the Iran National Science Foundation (project No: 92013440)Iran Nanotechnology Initiative Council
文摘Production of Cu-Cr/carbon nanotube (CNT) hybrid nano-composite by wet and dry milling processes at three different levels of milling energy was investigated in order to study the effect of milling energy in two different media on dispersion of CNTs, and preparation of the nano-composite. The structural evolution and solid solution formation were evaluated by X-ray diffraction technique. The microstructure was characterized by scanning electron microscopy and transmission electron microscopy. Also, the mechanical properties were measured by microhardness test. The mean crystallite size was in the range of 20-63 nm depending on milling medium and energy. CNTs dispersion is a function of milling energy. According to FESEM images and microhardness results, it can be concluded that wet milling is more applicable in dispersing CNTs homogeneously in comparison to dry milling. It was also found that wet milling at higher milling energies can be a beneficial method of producing the homogeneous hybrid nano-composite with the least damages introducing on CNTs because of the higher microhardness which can be attributed to better dispersion of less damaged CNTs. Compared with crystallite size changes, CNTs dispersion and damages were considerably more effective on hardness.
基金financial supports of this work by the University of Tehran and Iran Nanotechnology Initiative Council
文摘Porous bismuth ferrite ceramics were synthesized by sacrificial pore former method. A mixture of BiFeO3 and 20 wt% of various pore formers including high density polyethylene, polyethylene glycol, polyvinyl alcohol, urea and graphite was intensively milled for 10 h in a planetary ball mill, uniaxially cold pressed and then subjected to the multi-stage heat treatment. The results revealed that urea and polyvinyl alcohol are appropriate candidates for maintaining the strength of the final porous structure. Density and porosity measurements showed that by employing 20 wt% of high density polyethylene and graphite, a porous sample with a maximum porosity of nearly 40% could be obtained. Mercury porosimetry results showed that using urea as a pore former gives porous bismuth ferrite with a mean pore diameter of 7μm, uniform pore distribution as well as interconnected pores. Moreover, reactions between BiFeO3 matrix phase and thermal decomposition products of pore formers can lead to degradation of the BiFeO3 phase in the final porous samples. Analysis of X-ray diffraction patterns illustrated that in the samples pro- cessed with graphite, high density polyethylene and polyvinyl alcohol as pore former, BiFeO3 matrix phase partially or completely decomposed to intermediate phases of Bi2Fe4O9 and Bi25FeO40. Using of urea did not damage the matrix phase and porous BiFeO3 within the original perovskite structure could be prepared. Furthermore, thermodynamic investigation was carried out for prediction of possible in- teractions between matrix phase and pore former at elevated temperatures.